Skip to main content
Log in

Tailor-made functional surfaces based on cellulose-derived materials

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As one of the most abundant natural materials in nature, cellulose has revealed enormous potential for the construction of functional materials thanks to its sustainability, non-toxicity, biocompatibility, and biodegradability. Among many fascinating applications, functional surfaces based on cellulose-derived materials have attracted increasing interest recently, as platforms for diagnostics, sensoring, robust catalysis, water treatment, ultrafiltration, and anti-microbial surfaces. This mini-review attempts to cover the general methodology for the fabrication of functional cellulose surface and a few popular applications including bioactive and non-adhesive (i.e., anti-fouling and anti-microbial) surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal N, Altgarde N, Svedhem S, Zhang K, Fischer S, Groth T (2013) Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response. Langmuir 29:13853–13864. doi:10.1021/la4028157

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal N, Altgarde N, Svedhem S, Zhang K, Fischer S, Groth T (2014) Study on multilayer structures prepared from heparin and semi-synthetic cellulose sulfates as polyanions and their influence on cellular response. Colloids Surf B 116:93–103. doi:10.1016/j.colsurfb.2013.12.043

    Article  CAS  Google Scholar 

  • Aggarwal N, Groth T (2014) Multilayer films by blending heparin with semisynthetic cellulose sulfates: physico-chemical characterization and cell responses. J Biomed Mater Res A 102:4224–4233. doi:10.1002/jbm.a.35095

    PubMed  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008a) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282. doi:10.1021/bm701317k

    Article  CAS  PubMed  Google Scholar 

  • Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008b) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599. doi:10.1021/la801550j

    Article  CAS  PubMed  Google Scholar 

  • Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155. doi:10.1021/bm070304e

    Article  CAS  PubMed  Google Scholar 

  • Araújo AC, Song Y, Lundeberg J, Ståhl PL, Brumer H (2012) Activated paper surfaces for the rapid hybridization of DNA through capillary transport. Anal Chem 84:3311–3317. doi:10.1021/ac300025v

    Article  PubMed  Google Scholar 

  • Arola S, Tammelin T, Setälä H, Tullila A, Linder MB (2012) Immobilization–stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13:594–603. doi:10.1021/bm201676q

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685. doi:10.1021/la900323n

    Article  CAS  PubMed  Google Scholar 

  • Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rogers RD (2007) Ionic liquid-based preparation of cellulose–dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9:381–387. doi:10.1021/bm701023w

    Article  PubMed  Google Scholar 

  • Berndt S, Wesarg F, Wiegand C, Kralisch D, Müller FA (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783. doi:10.1007/s10570-013-9870-1

    Article  CAS  Google Scholar 

  • Bober P, Liu J, Mikkonen KS, Ihalainen P, Pesonen M, Plumed-Ferrer C, von Wright A, Lindfors T, Xu C, Latonen RM (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromolecules 15:3655–3663. doi:10.1021/bm500939x

    Article  CAS  PubMed  Google Scholar 

  • Boujemaoui A, Carlsson L, Malmström E, Lahcini M, Berglund L, Sehaqui H, Carlmark A (2012) Facile preparation route for nanostructured composites: surface-initiated ring-opening polymerization of ε-caprolactone from high-surface-area nanopaper. ACS Appl Mater Interfaces 4:3191–3198. doi:10.1021/am300537h

    Article  CAS  PubMed  Google Scholar 

  • Carlsson L, Malmstrom E, Carlmark A (2012) Surface-initiated ring-opening metathesis polymerisation from cellulose fibres. Polym Chem 3:727–733. doi:10.1039/c2py00554a

    Article  CAS  Google Scholar 

  • Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. Photochem Photobiol 88:527–536. doi:10.1111/j.1751-1097.2012.01117.x

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Geissler A, Bonaccurso E, Zhang K (2014) Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater Interfaces 6:6969–6976. doi:10.1021/am5020343

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Su Y, Zhang L, Shi Q, Peng J, Jiang Z (2010) In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. J Membr Sci 348:75–83. doi:10.1016/j.memsci.2009.10.042

    Article  CAS  Google Scholar 

  • Chen W, Su Y, Zheng L, Wang L, Jiang Z (2009) The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes. J Membr Sci 337:98–105. doi:10.1016/j.memsci.2009.03.029

    Article  CAS  Google Scholar 

  • Cheng F, Betts JW, Kelly SM, Schaller J, Heinze T (2013) Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem 15:989–998. doi:10.1039/C3gc36831a

    Article  CAS  Google Scholar 

  • Cheng G, Datta S, Liu Z, Wang C, Murton JK, Brown PA, Jablin MS, Dubey M, Majewski J, Halbert CE, Browning JF, Esker AR, Watson BJ, Zhang H, Hutcheson SW, Huber DL, Sale KL, Simmons BA, Kent MS (2012) Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Langmuir 28:8348–8358. doi:10.1021/la300955q

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Liu Z, Murton JK, Jablin M, Dubey M, Majewski J, Halbert C, Browning J, Ankner J, Akgun B, Wang C, Esker AR, Sale KL, Simmons BA, Kent MS (2011) Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose. Biomacromolecules 12:2216–2224. doi:10.1021/bm200305u

    Article  CAS  PubMed  Google Scholar 

  • Delaittre G, Dietrich M, Blinco JP, Hirschbiel A, Bruns M, Barner L, Barner-Kowollik C (2012) Photo-induced macromolecular functionalization of cellulose via nitroxide spin trapping. Biomacromolecules 13:1700–1705. doi:10.1021/bm3001364

    Article  CAS  PubMed  Google Scholar 

  • Dietrich M, Delaittre G, Blinco JP, Inglis AJ, Bruns M, Barner-Kowollik C (2012) Photoclickable surfaces for profluorescent covalent polymer coatings. Adv Funct Mater 22:304–312. doi:10.1002/adfm.201102068

    Article  CAS  Google Scholar 

  • Diez I, Eronen P, Osterberg M, Linder MB, Ikkala O, Ras RH (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191. doi:10.1002/mabi.201100099

    Article  CAS  PubMed  Google Scholar 

  • Drogat N, Granet R, Sol V, Memmi A, Saad N, Klein Koerkamp C, Bressollier P, Krausz P (2010) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13:1557–1562. doi:10.1007/s11051-010-9995-1

    Article  Google Scholar 

  • Edgar C, Gray D (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306. doi:10.1023/a:1027333928715

    Article  CAS  Google Scholar 

  • Emily DC, Derek GG (2009) Model cellulose i surfaces: a review model cellulosic surfaces. ACS symposium series, vol 1019. Am Chem Soc 75–93 doi:10.1021/bk-2009-1019.ch003

  • Eriksson J, Malmsten M, Tiberg F, Callisen TH, Damhus T, Johansen KS (2005) Enzymatic degradation of model cellulose films. J Colloid Interface Sci 284:99–106. doi:10.1016/j.jcis.2004.10.041

    Article  CAS  PubMed  Google Scholar 

  • Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539. doi:10.1021/bm200718s

    Article  CAS  PubMed  Google Scholar 

  • Fernandes MM, Francesko A, Torrent-Burgues J, Carrion-Fite FJ, Heinze T, Tzanov T (2014) Sonochemically processed cationic nanocapsules: efficient antimicrobials with membrane disturbing capacity. Biomacromolecules 15:1365–1374. doi:10.1021/bm4018947

    Article  CAS  PubMed  Google Scholar 

  • Fernandes SC, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJ, Mondragon I, Freire CS (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. doi:10.1021/am400338n

    Article  CAS  PubMed  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742. doi:10.1021/bm201661k

    Article  CAS  PubMed  Google Scholar 

  • Geissler A, Chen L, Zhang K, Bonaccurso E, Biesalski M (2013) Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chem Commun 2013:4962–4964. doi:10.1039/c3cc41568f

    Article  Google Scholar 

  • Gericke M, Doliska A, Stana J, Liebert T, Heinze T, Stana-Kleinschek K (2011) Semi-synthetic polysaccharide sulfates as anticoagulant coatings for PET, 1–cellulose sulfate. Macromol Biosci 11:549–556. doi:10.1002/mabi.201000419

    Article  CAS  PubMed  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465. doi:10.1021/bm200581h

    Article  CAS  PubMed  Google Scholar 

  • Han B, Zhang D, Shao Z, Kong L, Lv S (2013) Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes. Desalination 311:80–89. doi:10.1016/j.desal.2012.11.002

    Article  CAS  Google Scholar 

  • Hilpert K, Hancock RE (2007) Use of luminescent bacteria for rapid screening and characterization of short cationic antimicrobial peptides synthesized on cellulose using peptide array technology. Nat Protoc 2:1652–1660. doi:10.1038/nprot.2007.203

    Article  CAS  PubMed  Google Scholar 

  • Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902. doi:10.1021/am3007609

    Article  CAS  PubMed  Google Scholar 

  • Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28:11440–11447. doi:10.1021/la302110a

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JF, Tun HC (1973) Active insolubilized antibiotics based on cellulose and cellulose carbonate. Antimicrob Agents Chemother 3:575–579. doi:10.1128/aac.3.5.575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kittle JD, Wondraczek H, Wang C, Jiang F, Roman M, Heinze T, Esker AR (2012) Enhanced dewatering of polyelectrolyte nanocomposites by hydrophobic polyelectrolytes. Langmuir 28:11086–11094. doi:10.1021/la3016996

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kontturi E, Tammelin T, Osterberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35:1287–1304. doi:10.1039/B601872F

    Article  CAS  PubMed  Google Scholar 

  • Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Cellulose model SurfacesSimplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy. Langmuir 19:5735–5741. doi:10.1021/la0340394

    Article  CAS  Google Scholar 

  • Koseoglu-Imer DY, Dizge N, Koyuncu I (2012) Enzymatic activation of cellulose acetate membrane for reducing of protein fouling. Colloids Surf B 92:334–339. doi:10.1016/j.colsurfb.2011.12.013

    Article  CAS  Google Scholar 

  • Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081. doi:10.1016/j.eurpolymj.2008.09.016

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  PubMed  Google Scholar 

  • Levary DA, Parthasarathy R, Boder ET, Ackerman ME (2011) Protein-protein fusion catalyzed by sortase A. PLoS One 6:e18342 doi: 10.1371/journal.pone.0018342

  • Li HJ, Cao YM, Yang LS, Yuan Q (2005) Oil-water separation performance of anti-fouling alpha-cellulose hollow fiber ultrafiltration membrane. Chem J Chinese U 26:1890–1895

    CAS  Google Scholar 

  • Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586. doi:10.1021/ma901356s

    Article  CAS  Google Scholar 

  • Liu PS, Chen Q, Li L, Lin SC, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. J Mater Chem B 2:7222–7231. doi:10.1039/C4tb01151a

    Article  CAS  Google Scholar 

  • Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10:2809–2816. doi:10.1021/bm9006503

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu R, Tan J, Wang D, Jin X, Kang H, Wu M, Huang Y (2010) Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N,N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703. doi:10.1021/la904431z

    Article  CAS  PubMed  Google Scholar 

  • Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibers—an outlook beyond paper and cardboard. Polym Chem 3:1702–1713. doi:10.1039/c1py00445j

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi:10.1021/ac9013989

    Article  Google Scholar 

  • Maurer SA, Bedbrook CN, Radke CJ (2012) Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry. Ind Eng Chem Res 51:11389–11400. doi:10.1021/ie3008538

    Article  CAS  Google Scholar 

  • Meyers SR, Grinstaff MW (2012) Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 112:1615–1632. doi:10.1021/cr2000916

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, Dordick JS (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32:9557–9567. doi:10.1016/j.biomaterials.2011.08.080

    Article  CAS  PubMed  Google Scholar 

  • Mohan T, Niegelhell K, Zarth CSP, Kargl R, Köstler S, Ribitsch V, Heinze T, Spirk S, Stana-Kleinschek K (2014) Triggering protein adsorption on tailored cationic cellulose surfaces. Biomacromolecules 15:3931–3941. doi:10.1021/bm500997s

    Article  CAS  PubMed  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2011) Paper surfaces functionalized by nanoparticles. Adv Colloid Interf Sci 163:23–38. doi:10.1016/j.cis.2011.01.004

    Article  CAS  Google Scholar 

  • Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478. doi:10.1016/j.fm.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12:920–925. doi:10.1002/mabi.201200040

    Article  CAS  PubMed  Google Scholar 

  • Notley SM, Wågberg L (2005) Morphology of modified regenerated model cellulose II surfaces studied by atomic force microscopy: effect of carboxymethylation and heat treatment. Biomacromolecules 6:1586–1591. doi:10.1021/bm050005u

    Article  CAS  PubMed  Google Scholar 

  • Orelma H (2012) Cellulose based biointerfaces for immunodiagnostic applications. Ph.D. Thesis, Aalto University

  • Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318. doi:10.1021/bm201236a

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, Filpponen I, Johansson L-S, Österberg M, Rojas OJ, Laine J (2012a) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61. doi:10.1007/s13758-012-0061-7

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, Johansson L-S, Filpponen I, Rojas OJ, Laine J (2012b) Generic method for attaching biomolecules via avidin–biotin complexes immobilized on films of regenerated and nanofibrillar cellulose. Biomacromolecules 13:2802–2810. doi:10.1021/bm300781k

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, Teerinen T, Johansson L-S, Holappa S, Laine J (2012c) CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules 13:1051–1058. doi:10.1021/bm201771m

    Article  CAS  PubMed  Google Scholar 

  • Pahimanolis N, Hippi U, Johansson L-S, Saarinen T, Houbenov N, Ruokolainen J, Seppälä J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212. doi:10.1007/s10570-011-9573-4

    Article  CAS  Google Scholar 

  • Pangu G, Johnston E, Petkov J, Parry N, Leach M, Hammer DA (2007) Targeted particulate adhesion to cellulose surfaces mediated by bifunctional fusion proteins. Langmuir 23:10682–10693. doi:10.1021/la700603u

    Article  CAS  PubMed  Google Scholar 

  • Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal Chem 28:925–942. doi:10.1016/j.trac.2009.05.005

    Article  CAS  Google Scholar 

  • Qiu X, Ren X, Hu S (2013) Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr Polym 92:1887–1895. doi:10.1016/j.carbpol.2012.11.080

    Article  CAS  PubMed  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. doi:10.1021/cr800208y

    Article  CAS  PubMed  Google Scholar 

  • Roman M (2009) Model cellulosic surfaces: history and recent advances model cellulosic surfaces. ACS symposium series, vol 1019. Am Chem Soc 3–53 doi: 10.1021/bk-2009-1019.ch001

  • Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446. doi:10.1021/am4027983

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99. doi:10.1021/bm700849j

    Article  CAS  PubMed  Google Scholar 

  • Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2003) Cellulose derivative–hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96. doi:10.1021/bm0341881

    Article  Google Scholar 

  • Schaub M, Wenz G, Wegner G, Stein A, Klemm D (1993) Ultrathin films of cellulose on silicon wafers. Adv Mater 5:919–922. doi:10.1002/adma.19930051209

    Article  CAS  Google Scholar 

  • Sicard C, Brennan JD (2013) Bioactive paper: biomolecule immobilization methods and applications in environmental monitoring. MRS Bull 38:331–334. doi:10.1557/mrs.2013.61

    Article  CAS  Google Scholar 

  • Sirviö JA, Anttila A-K, Pirttilä AM, Liimatainen H, Kilpeläinen I, Niinimäki J, Hormi O (2014) Cationic wood cellulose films with high strength and bacterial anti-adhesive properties. Cellulose 21:3573–3583. doi:10.1007/s10570-014-0351-y

    Article  Google Scholar 

  • Skorb EV, Andreeva DV (2013) Surface nanoarchitecture for bio-applications: self-regulating intelligent interfaces. Adv Funct Mater 23:4483–4506. doi:10.1002/adfm.201203884

    Article  CAS  Google Scholar 

  • Stuart MA, Huck WT, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. doi:10.1038/nmat2614

    Article  PubMed  Google Scholar 

  • Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21:16066–16076. doi:10.1039/c1jm11620g

    Article  CAS  Google Scholar 

  • Tischer T, Goldmann AS, Linkert K, Trouillet V, Börner HG, Barner-Kowollik C (2012) Modular ligation of thioamide functional peptides onto solid cellulose substrates. Adv Funct Mater 22:3853–3864. doi:10.1002/adfm.201200266

    Article  CAS  Google Scholar 

  • Uth C, Zielonka S, Hörner S, Rasche N, Plog A, Orelma H, Avrutina O, Zhang K, Kolmar H (2014) A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew Chem Int Ed 53:12618–12623. doi:10.1002/anie.201404616

    CAS  Google Scholar 

  • Wang M, Yuan J, Huang X, Cai X, Li L, Shen J (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf B 103:52–58. doi:10.1016/j.colsurfb.2012.10.025

    Article  CAS  Google Scholar 

  • Wang Z, Ma H, Hsiao BS, Chu B (2014) Nanofibrous ultrafiltration membranes containing cross-linked poly(ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55:366–372. doi:10.1016/j.polymer.2013.10.049

  • Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R (2014a) Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed 53:8004–8031. doi:10.1002/anie.201400546

    Article  CAS  Google Scholar 

  • Wei Q, Becherer T, Noeske PL, Grunwald I, Haag R (2014b) A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv Mater 26:2688–2693. doi:10.1002/adma.201304737

    Article  CAS  PubMed  Google Scholar 

  • Westman E-H, Ek M, Wågberg L (2009) Antimicrobial activity of polyelectrolyte multilayer-treated cellulose films. Holzforschung 63:33–39. doi:10.1515/hf.2009.009

  • Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E (2013) Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta 763:20–27. doi:10.1016/j.aca.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Filipe CDM, Kavoosi M, Haynes CA, Pelton R, Brook MA (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19:2189–2198. doi:10.1039/b818410k

    Article  CAS  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152. doi:10.1016/s0142-9612(03)00296-5

    Article  CAS  PubMed  Google Scholar 

  • Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2005) In situ modification on cellulose acetate hollow fiber membrane modified with phospholipid polymer for biomedical application. J Membr Sci 249:133–141. doi:10.1016/j.memsci.2004.10.006

    Article  CAS  Google Scholar 

  • Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28:11265–11273. doi:10.1021/la301661x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Q, Zhang Y, Wang H, Brash J, Chen H (2011) Anti-fouling bioactive surfaces. Acta Biomater 7:1550–1557. doi:10.1016/j.actbio.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Huang X, Li P, Li L, Shen J (2013) Surface-initiated RAFT polymerization of sulfobetaine from cellulose membranes to improve hemocompatibility and antibiofouling property. Polym Chem 4:5074–5085. doi:10.1039/c3py00565h

    Article  CAS  Google Scholar 

  • Zhao G-L, Hafrén J, Deiana L, Córdova A (2010) Heterogeneous “Organoclick” derivatization of polysaccharides: photochemical thiol-ene click modification of solid cellulose. Macromol Rapid Commun 31:740–744. doi:10.1002/marc.200900764

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Song F, Wang X-L, Wang Y-Z (2014) In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles. Cellulose 21:3097–3105. doi:10.1007/s10570-014-0324-1

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Additional information

These authors Chao Wang and Kai Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Venditti, R.A. & Zhang, K. Tailor-made functional surfaces based on cellulose-derived materials. Appl Microbiol Biotechnol 99, 5791–5799 (2015). https://doi.org/10.1007/s00253-015-6722-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6722-y

Keywords

Navigation