Skip to main content
Log in

Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP+ concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space–time yield and turnover number of NADP+ in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amidjojo M, Franco-Lara E, Nowak A, Link H, Weuster-Botz D (2005) Asymmetric synthesis of tert-butyl (3R, 5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir. Appl Microbiol Biotechnol 69:9–15

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw CW, Hummel W, Wong CH (1992) Lactobacillus kefir alcohol dehydrogenase-a useful catalyst for synthesis. J Org Chem 57:1532–1536

    Article  CAS  Google Scholar 

  • Burton RL, Chen SW, Xu XL, Grant GA (2007) A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J Biol Chem 282:31517–31524

    Article  CAS  PubMed  Google Scholar 

  • Campopiano O, Mundorff E, Borup B, Voladri R (2011) Ketoreductase polypeptides for the production of azetidinone. US20110159567A1

  • Chen C, Joo JC, Brown G, Stolnikova E, Halavaty AS, Savchenko A, Anderson WF, Yakunin AF (2014) Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Appl Environ Microbiol 80:3992–4002

    Article  PubMed Central  PubMed  Google Scholar 

  • Cleland WW (1979) Substrate inhibition. Methods Enzymol 63:500–513

  • Fenglai S (2007) Chemoenzymatic synthesis of key chiral intermediates of statins. Dissertation, Zhejiang University

  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684

    Article  CAS  PubMed  Google Scholar 

  • Gilbreath SG, Harris CM, Harris TM (1988) Biomimetic syntheses of pretetramides. 1. Synthesis of preteramide by tandem txtension of a polyketide chain. J Am Chem Soc 110:6172–6179

    Article  CAS  PubMed  Google Scholar 

  • Godinho LF, Reis CR, van Merkerk R, Poelarends GJ, Quax WJ (2012) An esterase with superior activity and enantioselectivity towards 1,2-o-isopropylideneglycerol esters obtained by protein design. Adv Synth Catal 354:3009–3015

    Article  CAS  Google Scholar 

  • Gooding OW, Voladri R, Bautista A, Hopkins T, Huisman G, Jenne S, Ma S, Mundorff EC, Savile MM (2010) Development of a practical biocatalytic process for (R)-2-methylpentanol. Org Process Res Dev 14:119–126

    Article  CAS  Google Scholar 

  • Huang L, Ma H-M, Yu H-L, Xu J-H (2014) Altering the substrate specificity of reductase CgKR1 from Candida glabrata by protein engineering for bioreduction of aromatic α-keto esters. Adv Synth Catal 356:1943–1948

    Article  CAS  Google Scholar 

  • Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:122–129

    Article  CAS  PubMed  Google Scholar 

  • Hummel W, Riebel B (2000) Alcohol dehydrogenase and its use for the enzymatic production of chiral hydroxy compounds. US006037158A

  • Jackson B, Noti C, Hu GX (2012) Preparation of 3,5-dioxo hexanoate ester. WO2012130920A1

  • Kragl U, Niedermeyer U, Kula MR, Wandrey C (1990) Engineering aspects of enzyme engineering-continuous asymmetric C-C bond formation in an enzyme-menbrane-reactor. Ann N Y Acad Sci 613:167–175

    Article  CAS  Google Scholar 

  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Leuchs S, Greiner L (2011) Alcohol dehydrogenase from Lactobacillus brevis: a versatile robust catalyst for enantioselective transformations. Chem Biochem Eng Q 25:267–281

    CAS  Google Scholar 

  • Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Process Res Dev 14:188–192

    Article  CAS  Google Scholar 

  • LiCata VJ, Allewell NM (1997) Is substrate inhibition a consequence of allostery in aspartate transcarbamylase? Biophys Chem 64:225–234

    Article  CAS  PubMed  Google Scholar 

  • Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379

    Article  CAS  Google Scholar 

  • Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    Article  CAS  PubMed  Google Scholar 

  • Muller M (2005) Chemoenzymatic synthesis of building blocks for statin side chains. Angew Chem 44:362–365

    Article  Google Scholar 

  • Pace V, Cabrera AC, Ferrario V, Sinisterra JV, Ebert C, Gardossi L, Braiuca P, Alcántara AR (2011) Structural bases for understanding the stereoselectivity in ketone reductions with ADH from Thermus thermophilus: a quantitative model. J Mol Catal B Enzym 70:23–31

    Article  CAS  Google Scholar 

  • Patel JM (2009) Biocatalytic synthesis of atorvastatin intermediates. J Mol Catal B Enzym 61:123–128

    Article  CAS  Google Scholar 

  • Phosrithong N, Ungwitayatorn J (2010) Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res 19:817–835

    Article  CAS  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schlieben NH, Niefind K, Muller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349:801–813

    Article  CAS  PubMed  Google Scholar 

  • Stein EA (2001) New statins and new doses of older statins. Curr Atheroscler Rep 3:14–18

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

    Article  CAS  PubMed  Google Scholar 

  • Villela Filho M, Stillger T, Müller M, Liese A, Wandrey C (2003) Is log P a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew Chem 115:3101–3104

  • Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresour Technol 102:7023–7028

    Article  CAS  PubMed  Google Scholar 

  • Weckbecker A, Hummel W (2006) Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal Biotransfor 24:380–389

    Article  CAS  Google Scholar 

  • Westerbeek A, Szymanski W, Wijma HJ, Marrink SJ, Feringa BL, Janssen DB (2011) Kinetic resolution of alpha-bromoamides: experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases. Adv Synth Catal 353:931–944

    Article  CAS  Google Scholar 

  • Wolberg M, Hummel W, Wandrey C, Müller M (2000) Highly regio- and enantioselective reduction of 3,5-dioxocarboxylates. Angew Chem Int Ed 39:4306–4308

    Article  CAS  Google Scholar 

  • Wolberg M, Hummel W, Müller M (2001) Biocatalytic reduction of β, δ-diketo esters: a highly stereoselective approach to all four stereoisomers of a chlorinated β, δ-dihydroxy hexanoate. Chem Eur J 7:4562–4571

    Article  CAS  PubMed  Google Scholar 

  • Wolberg M, Kaluzna IA, Müller M, Stewart JD (2004) Regio and enantioselective reduction of t-butyl 6-chloro-3,5-dioxohexanoate with baker’s yeast. Tetrahedron Asymmetry 15:2825–2828

    Article  CAS  Google Scholar 

  • Wolberg M, Filho MV, Bode S, Geilenkirchen P, Felsmann R, Liese A, Hummel W, Müller M (2008) Chemoenzymatic synthesis of the chiral side-chain of statins: application of an alcohol dehydrogenase catalysed ketone reduction on a large scale. Bioprocess Biosyst Eng 31:183–191

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Brandt W, Geissler R, Facchini PJ (2009) Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis. J Biol Chem 284:26758–26767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Key Project of Chinese National Programs for Fundamental Research and Development (no. 2011CB710800), the Hi-Tech Research and Development Program of China (no. 2011AA02A209), and the National Natural Science Foundation of China (no. 21476199).

Conflict of interest

The authors all declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ping Wu or Li-Rong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XJ., Chen, SY., Wu, JP. et al. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir . Appl Microbiol Biotechnol 99, 8963–8975 (2015). https://doi.org/10.1007/s00253-015-6675-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6675-1

Keywords

Navigation