Skip to main content
Log in

Which properties of cutinases are important for applications?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cutinases (EC 3.1.1.74) are extracellular enzymes that belong to α/β hydrolases. They are serine esterases with the classical Ser-His-Asp triad similar to several lipases and serine proteases. In nature, cutinases catalyse the hydrolysis of the polyesters of the cuticle and the suberin layers, which protect plant surfaces. Cutinase production is typical for plant pathogenic fungi, but also, bacterial cutinases and cutinases from plant pollen have been discovered. Cutinases are promiscuous esterases catalysing reactions with a wide range of different substrates, such as short-chain soluble esters, water-insoluble medium and long-chain triacylglycerols, polyesters and waxes. In the current work, an overview is given on suggested applications of cutinases in the textile industry, in laundry detergents, in processing of biomass and food, in biocatalysis and in detoxification of environmental pollutants. The applications are discussed from the point of view of cutinase properties—which properties of cutinases are already advantageous and which would be desired. In addition, improvements that have been made on cutinase performance by protein and reaction engineering are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams C, Miasnikov A (2010) Fungal cutinase from Magnaporthe griesea. WO2010107560

  • Agrawal PB (2005) The performance of cutinase and pectinase in cotton scouring. University of Twente

  • Agrawal PB, Nierstrasz VA, Warmoeskerken MMCG (2008) Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzym Microb Technol 42:473–482. doi:10.1016/j.enzmictec.2008.01.016

    Article  CAS  Google Scholar 

  • Agrawal PB, Nierstrasz VA, Warmoeskerken MMCG (2010) Ultrasound-boosted enzymatic cotton scouring process with cutinase and pectate lyase. Biocatal Biotransform 28:320–328. doi:10.3109/10242422.2010.528832

    Article  CAS  Google Scholar 

  • Ahn J-Y, Kim Y-H, Min J, Lee J (2006) Accelerated degradation of dipentyl phthalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria. Curr Microbiol 52:340–344. doi:10.1007/s00284-005-0124-9

    Article  CAS  PubMed  Google Scholar 

  • Alisch-Mark M, Herrmann A, Zimmermann W (2006) Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett 28:681–685. doi:10.1007/s10529-006-9041-7

    Article  CAS  PubMed  Google Scholar 

  • Andersen KE, Borch K, Krebs LNE, Steffen E, Landvik S, Schnorr KM (2006) Plant extraction process. WO2006111163

  • Araújo R, Silva C, O’Neill A, Micaelo N, Guebitz G, Soares CM, Casal M, Cavaco-Paulo A (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857. doi:10.1016/j.jbiotec.2006.12.028

    Article  PubMed  Google Scholar 

  • Badenes SM, Lemos F, Cabral JMS (2010) Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles. Biotechnol Lett 32:399–403. doi:10.1007/s10529-009-0172-5

    Article  CAS  PubMed  Google Scholar 

  • Badenes SM, Lemos F, Cabral JMS (2011a) Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system. Bioprocess Biosyst Eng 34:1133–1142. doi:10.1007/s00449-011-0564-5

    Article  CAS  PubMed  Google Scholar 

  • Badenes SM, Lemos F, Cabral JMS (2011b) Stability of cutinase, wild type and mutants, in AOT reversed micellar system-effect of mixture components of alkyl esters production. J Chem Technol Biotechnol 86:34–41. doi:10.1002/jctb.2505

    Article  CAS  Google Scholar 

  • Baker CJ, Bateman DF (1978) Cutin degradation by plant pathogenic fungi. Phytopathology 68:1577–1584

    Article  Google Scholar 

  • Balcão VM, Malcata FX (1998) Lipase catalyzed modification of milkfat. Biotechnol Adv 16:309–341. doi:10.1016/S0734-9750(97)00064-5

    Article  PubMed  Google Scholar 

  • Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R (2013) Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut Res Int 20:8057–8076. doi:10.1007/s11356-013-1982-5

    Article  PubMed  Google Scholar 

  • Berk Z (1976) The biochemistry of foods. Elsevier, Amsterdam

    Google Scholar 

  • Boom A, Sinninge Damsté JS, de Leeuw JW (2005) Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Org Geochem 36:595–601. doi:10.1016/j.orggeochem.2004.10.017

    Article  CAS  Google Scholar 

  • Brissos V, Eggert T, Cabral JMS, Jaeger K-E (2008a) Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Eng Des Sel 21:387–393. doi:10.1093/protein/gzn014

    Article  CAS  PubMed  Google Scholar 

  • Brissos V, Melo EP, Martinho JMG, Cabral JMS (2008b) Biochemical and structural characterisation of cutinase mutants in the presence of the anionic surfactant AOT. Biochim Biophys Acta 1784:1326–1334. doi:10.1016/j.bbapap.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  • Carneiro F, Silva C, Matamá T, Araújo R, Casal M, Güebitz G, Cavaco-Paulo A (2005) Method for the modification of polyacrylonitrile fibres containing vinyl acetate as a comonomer and polyamide fibres, using a cutinase enzyme. WO2005040487

  • Carvalho CML, Serralheiro MLM, Cabral JMS, Aires-Barros MR (1997) Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles. Enzym Microb Technol 21:117–123. doi:10.1016/S0141-0229(96)00245-1

    Article  CAS  Google Scholar 

  • Carvalho CM, Aires-Barros MR, Cabral JM (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CML, Aires-Barros MR, Cabral JMS (2000) Kinetics of cutinase catalyzed transesterification in AOT reversed micelles: modeling of a batch stirred tank reactor. J Biotechnol 81:1–13. doi:10.1016/S0168-1656(00)00260-1

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862. doi:10.1074/jbc.M800848200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767. doi:10.1016/j.biotechadv.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  • Cunnah PJ, Aires-Barros MR, Cabral JMS (1996) Esterification and transesterification catalysed by cutinase in reverse micelles of CTAB for the synthesis of short chain esters. Biocatal Biotransform 14:125–146

    Article  CAS  Google Scholar 

  • De Barros DPC, Fonseca LP, Fernandes P, Cabral JMS, Mojovic L (2009) Biosynthesis of ethyl caproate and other short ethyl esters catalyzed by cutinase in organic solvent. J Mol Catal B Enzym 60:178–185. doi:10.1016/j.molcatb.2009.05.004

    Article  Google Scholar 

  • Degani O, Gepstein S, Dosoretz CG (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotechnol 102–103:277–290. doi:10.1385/ABAB:102-103:1-6:277

    Article  PubMed  Google Scholar 

  • Dutta K, Dasu VV (2011) Synthesis of short chain alkyl esters using cutinase from Burkholderia cepacia NRRL B2320. J Mol Catal B Enzym 72:150–156. doi:10.1016/j.molcatb.2011.05.013

    Article  CAS  Google Scholar 

  • Dutta K, Sen S, Veeranki VD (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44:127–134. doi:10.1016/j.procbio.2008.09.008

    Article  CAS  Google Scholar 

  • Egmond MR, van Bemmel CJ (1997) Lipases, part A: biotechnology. Methods Enzymol 284:119–129. doi:10.1016/S0076-6879(97)84008-6

    CAS  PubMed  Google Scholar 

  • Ettinger WF, Thukral SK, Kolattukudy PE (1987) Structure of cutinase gene, cDNA, and the derived amino acid sequence from phytopathogenic fungi. Biochemistry 26:7883–7892. doi:10.1021/bi00398a052

    Article  CAS  Google Scholar 

  • Fett WF, Wijey C, Moreau RA, Osman SF (1999) Production of cutinase by Thermomonospora fusca ATCC 27730. J Appl Microbiol 86:561–568. doi:10.1046/j.1365-2672.1999.00690.x

    Article  CAS  Google Scholar 

  • Flipsen JAC, Appel ACM, van der Hijden HTWM, Verrips CT (1998) Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzym Microb Technol 23:274–280. doi:10.1016/S0141-0229(98)00050-7

    Article  CAS  Google Scholar 

  • Gandini A, Pascoal Neto C, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci 31:878–892. doi:10.1016/j.progpolymsci.2006.07.004

    Article  CAS  Google Scholar 

  • Gonçalves APV, Cabral JMS, Aires-Barros MR (1996) Immobilization of a recombinant cutinase by entrapment and by covalent binding. Appl Biochem Biotechnol 60:217–228. doi:10.1007/BF02783585

    Article  PubMed  Google Scholar 

  • Gonçalves AM, Schacht E, Matthijs G, Aires Barros MR, Cabral JMS, Gil MH (1999) Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports. Enzym Microb Technol 24:60–66. doi:10.1016/S0141-0229(98)00089-1

    Article  Google Scholar 

  • Gonçalves AM, Serro AP, Aires-Barros MR, Cabral JMS (2000) Effects of ionic surfactants used in reversed micelles on cutinase activity and stability. Biochim Biophys Acta Prot Struct Mol Enzymol 1480:92–106. doi:10.1016/S0167-4838(00)00093-5

    Article  Google Scholar 

  • Graça J, Santos S (2007) Suberin: a biopolyester of plants’ skin. Macromol Biosci 7:128–135. doi:10.1002/mabi.200600218

    Article  PubMed  Google Scholar 

  • Gross RA, Ganesh M, Lu W (2010) Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 28:435–443. doi:10.1016/j.tibtech.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  • Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. Trends Biotechnol 26:32–38. doi:10.1016/j.tibtech.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • Hardin IR, Li Y, Akin D (1998) Cotton wall structure and enzymatic treatments. In: Eriksson KE, Cavaco-Paulo A (eds) Enzyme applications in fiber processing. ACS Symposium Series 687, Washington, DC, pp 190–203

  • Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, Steinkellner G, Gruber K, Schwab H, Guebitz GM (2013) Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 110:2581–2590. doi:10.1002/bit.24930

    Article  CAS  PubMed  Google Scholar 

  • Hijden HTWM, Marugg J, Warr JF, Klugkist J, Musters W, Hondmann DH (1994) Enzymatic detergent compositions. WO9403578

  • Horii K, Adachi T, Tanino T, Tanaka T, Kotaka A, Sahara H, Hashimoto T, Kuratani N, Shibasaki S, Ogino C, Noda H, Hata Y, Ueda M, Kondo A (2010) Fatty acid production from butter using novel cutinase-displaying yeast. Enzym Microb Technol 46:194–199. doi:10.1016/j.enzmictec.2009.10.008

    Article  CAS  Google Scholar 

  • Hunsen M, Azim A, Mang H, Wallner SR, Ronkvist A, Xie W, Gross RA (2007) A cutinase with polyester synthesis activity. Macromolecules 40:148–150. doi:10.1021/ma062095g

    Article  CAS  Google Scholar 

  • Iversen T, Nilsson H, Olsson A (2010) A method for separating from suberin and/or cutin containing plants, a solid and/or oil fraction enriched in cis-9,10-epoxy-18-hydroxyoctadecanoic acid. WO2010093320

  • Järvinen R, Silvestre AJD, Holopainen U, Kaimainen M, Nyyssölä A, Gil AM, Pascoal Neto C, Lehtinen P, Buchert J, Kallio H (2009) Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization. J Agric Food Chem 57:9016–9027

    Article  PubMed  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832. doi:10.1093/jxb/47.12.1813

    Article  CAS  Google Scholar 

  • Kim Y-H, Lee J, Ahn J-Y, Gu MB, Moon S-H (2002) Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl Environ Microbiol 68:4684–4688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim Y-H, Lee J, Moon S-H (2003) Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase. Appl Microbiol Biotechnol 63:75–80. doi:10.1007/s00253-003-1332-5

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Ahn J-Y, Moon S-H, Lee J (2005) Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349–1355. doi:10.1016/j.chemosphere.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  • Koeller W, Kolattukudy PE (1982) Mechanism of action of cutinase: chemical modification of the catalytic triad characteristic for serine hydrolases. Biochemistry 21:3083–3090. doi:10.1021/bi00256a008

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000. doi:10.1126/science.208.4447.990

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1984) Cutinases from fungi and pollen. In: Borgström B, Brockman H (eds) Lipases vol. C. Elsevier, Amsterdam, pp 471–504

    Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Poulose A (1991) Cutinase cleaning compositions. US4981611

  • Kontkanen H, Westerholm-Parvinen A, Saloheimo M, Bailey M, Rättö M, Mattila I, Mohsina M, Kalkkinen N, Nakari-Setälä T, Buchert J (2009) Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 75:2148–2157. doi:10.1128/AEM.02103-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Song WS, Kim HR (2010) Cutinase treatment of cotton fabrics. Fibers Polym 10:802–806. doi:10.1007/s12221-009-0802-5

    Article  Google Scholar 

  • Li D, Ashby AM, Johnstone K (2003) Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Mol Plant Microbe Interact 16:545–552. doi:10.1094/MPMI.2003.16.6.545

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Cambillau C (1999) Structure-activity of cutinase, a small lipolytic enzyme. Biochim Biophys Acta Mol Cell Biol Lipids 1441:185–196. doi:10.1016/S1388-1981(99)00159-6

    Article  CAS  Google Scholar 

  • Longhi S, Czjzek M, Lamzin V, Nicolas A, Cambillau C (1997) Atomic resolution (1.0 A) crystal structure of Fusarium solani cutinase: stereochemical analysis. J Mol Biol 268:779–799. doi:10.1006/jmbi.1997.1000

    Article  CAS  PubMed  Google Scholar 

  • Mannesse MLM, Cox RC, Koops BC, Verheij HM, de Haas GH, Egmond MR, van der Hijden HTWM, de Vlieg J (1995) Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogs. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry 34:6400–6407. doi:10.1021/bi00019a020

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Nicolas A, van Tilbeurgh H, Egloff MP, Cudrey C, Verger R, Cambillau C (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33:83–89. doi:10.1021/bi00167a011

    Article  CAS  PubMed  Google Scholar 

  • Matamá T, Vaz F, Gübitz GM, Cavaco-Paulo A (2006) The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase. Biotechnol J 1:842–849. doi:10.1002/biot.200600034

    Article  PubMed  Google Scholar 

  • Metzger JO, Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71:13–22. doi:10.1007/s00253-006-0335-4

    Article  CAS  PubMed  Google Scholar 

  • Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364. doi:10.1002/biot.200600095

    Article  CAS  PubMed  Google Scholar 

  • Nyyssölä A, Pihlajaniemi V, Järvinen R, Mikander S, Kontkanen H, Kruus K, Kallio H, Buchert J (2013) Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88. Enzym Microb Technol 52:272–278

    Article  Google Scholar 

  • Nyyssölä A, Pihlajaniemi V, Häkkinen M, Kontkanen H, Saloheimo M, Nakari-Setälä T (2014) Cloning and characterization of a novel acidic cutinase from Sirococcus conigenus. Appl Microbiol Biotechnol 98:3639–3650. doi:10.1007/s00253-013-5293-z

    Article  PubMed  Google Scholar 

  • Oeser T, Wei R, Baumgarten T, Billig S, Föllner C, Zimmermann W (2010) High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146:100–104. doi:10.1016/j.jbiotec.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  • Papadimitriou V, Xenakis A, Cazianis CT, Kolisis FN (1997) Structural and catalytic aspects of cutinase in w/o microemulsions. Colloid Polym Sci 275:609–616. doi:10.1007/s003960050126

    Article  CAS  Google Scholar 

  • Pio TF, Macedo GA (2009) Cutinases: properties and industrial applications. Adv Appl Microbiol 66:77–95. doi:10.1016/S0065-2164(08)00804-6

    CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246. doi:10.1016/j.tplants.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  • Poulose A, Boston M (1994) Enzyme assisted degradation of surface membranes of harvested fruits and vegetables. US5298265

  • Regado MA, Cristóvão BM, Moutinho CG, Balcão VM, Aires-Barros R, Ferreira JPM, Xavier Malcata F (2007) Flavour development via lipolysis of milkfats: changes in free fatty acid pool. Int J Food Sci Technol 42:961–968. doi:10.1111/j.1365-2621.2006.01317.x

    Article  CAS  Google Scholar 

  • Ribitsch D, Yebra AO, Zitzenbacher S, Wu J, Nowitsch S, Steinkellner G, Greimel K, Doliska A, Oberdorfer G, Gruber CC, Gruber K, Schwab H, Stana-Kleinschek K, Acero EH, Guebitz GM (2013) Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. Biomacromolecules 14:1769–1776. doi:10.1021/bm400140u

    Article  CAS  PubMed  Google Scholar 

  • Roussel A, Amara S, Nyyssölä A, Mateos-Diaz E, Blangy S, Kontkanen H, Westerholm-Parvinen A, Carrière F, Cambillau C (2014) A cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases. J Mol Biol. doi:10.1016/j.jmb.2014.09.003

    PubMed  Google Scholar 

  • Sebastião MJ, Cabral JM, Aires-Barros MR (1993) Synthesis of fatty acid esters by a recombinant cutinase in reversed micelles. Biotechnol Bioeng 42:326–332. doi:10.1002/bit.260420309

    Article  PubMed  Google Scholar 

  • Silva C, Matamá T, Guebitz GM, Cavaco-Paulo A (2005a) Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. J Polym Sci A Polym Chem 43:2749–2753. doi:10.1002/pola.20739

    Article  CAS  Google Scholar 

  • Silva CM, Carneiro F, O’Neill A, Fonseca LP, Cabral JSM, Guebitz G, Cavaco-Paulo A (2005b) Cutinase—a new tool for biomodification of synthetic fibers. J Polym Sci A Polym Chem 43:2448–2450. doi:10.1002/pola.20684

    Article  CAS  Google Scholar 

  • Silva C, Araújo R, Casal M, Gübitz GM, Cavaco-Paulo A (2007) Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzym Microb Technol 40:1678–1685. doi:10.1016/j.enzmictec.2006.09.001

    Article  CAS  Google Scholar 

  • Silva C, Da S, Silva N, Matamá T, Araújo R, Martins M, Chen S, Chen J, Wu J, Casal M, Cavaco-Paulo A (2011) Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnol J 6:1230–1239. doi:10.1002/biot.201000391

    Article  CAS  PubMed  Google Scholar 

  • Stavila E, Alberda van Ekenstein GOR, Loos K (2013a) Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides. Biomacromolecules 14:1600–1606. doi:10.1021/bm400243a

    Article  CAS  PubMed  Google Scholar 

  • Stavila E, Arsyi RZ, Petrovic DM, Loos K (2013b) Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. Eur Polym J 49:834–842. doi:10.1016/j.eurpolymj.2012.12.010

    Article  CAS  Google Scholar 

  • Tavanai H (2009) A new look at the modification of polyethylene terephthalate by sodium hydroxide. J Text Inst 100:633–639

    Article  CAS  Google Scholar 

  • Ternström T, Svendsen A, Akke M, Adlercreutz P (2005) Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride. Biochim Biophys Acta 1748:74–83. doi:10.1016/j.bbapap.2004.12.014

    Article  PubMed  Google Scholar 

  • Viksoe-Nielsen A, Soerensen BH (2009a) Cutinase for detoxification of feed products. WO2009080701

  • Viksoe-Nielsen A, Soerensen BH (2009b) Detoxification of aflatoxin in feed products. US2009226570

  • Xun H, Chen Z, Guangming Z, Danlian H, Liang L, Cui L, Meihua Z, Chao H, Ningjie L, Zhen W, Piao X, Min C (2014) Immobilized cutinase and preparation method and application thereof in removal of phthalic acid esters in water. CN103756991

  • Yan HJ, Du GC, Chen J (2011) Enhancement of cotton waxes removal with Thermobifida fusca cutinase by temperature control process. Adv Mater Res 81–86

  • Yang S, Xu H, Yan Q, Liu Y, Zhou P, Jiang Z (2013) A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters). J Ind Microbiol Biotechnol 40:217–226. doi:10.1007/s10295-012-1222-x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen S, Xu M, Cavaco-Paulo A, Cavoco-Paulo A, Wu J, Chen J (2010) Characterization of Thermobifida fusca cutinase-carbohydrate-binding module fusion proteins and their potential application in bioscouring. Appl Environ Microbiol 76:6870–6876. doi:10.1128/AEM.00896-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoungrana T, Findenegg GH, Norde W (1997) Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 190:437–448. doi:10.1006/jcis.1997.4895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Ossi Turunen, Ville Pihlajaniemi and Mika Sipponen for help with the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Nyyssölä.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyyssölä, A. Which properties of cutinases are important for applications?. Appl Microbiol Biotechnol 99, 4931–4942 (2015). https://doi.org/10.1007/s00253-015-6596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6596-z

Keywords

Navigation