Skip to main content
Log in

Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, employs a novel collection of cell-associated proteins to digest crystalline cellulose. Other Bacteroidetes rely on cell surface proteins related to the starch utilization system (Sus) proteins SusC and SusD to bind oligosaccharides and import them across the outer membrane for further digestion. These bacteria typically produce dozens of SusC-like porins and SusD-like oligosaccharide-binding proteins to facilitate utilization of diverse polysaccharides. C. hutchinsonii specializes in cellulose digestion and its genome has only two susC-like genes and two susD-like genes. Single and multiple gene deletions were constructed to determine if the susC-like and susD-like genes have roles in cellulose utilization. A mutant lacking all susC-like and all susD-like genes digested cellulose and grew on cellulose as well as wild-type cells. Further, recombinantly expressed SusD-like proteins CHU_0547 and CHU_0554 failed to bind cellulose or β-glucan hemicellulosic polysaccharides. The results suggest that the Bacteroidetes Sus paradigm for polysaccharide utilization may not apply to the cellulolytic bacterium C. hutchinsonii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213. doi:10.1111/j.1462-2920.2006.01152.x

    Article  CAS  PubMed  Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281:36269–36279. doi:10.1074/jbc.M606509200

    Article  CAS  PubMed  Google Scholar 

  • Bolam DN, Koropatkin NM (2012) Glycan recognition by the Bacteroidetes Sus-like systems. Curr Opin Struct Biol 22(5):563–569. doi:10.1016/j.sbi.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681. doi:10.1146/annurev-biochem-091208-085603

    Article  CAS  PubMed  Google Scholar 

  • Freelove AC, Bolam DN, White P, Hazlewood GP, Gilbert HJ (2001) A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J Biol Chem 276(46):43010–43017. doi:10.1074/jbc.M107143200

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microbiol 55(12):3039–3044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105(25):8724–8729. doi:10.1073/pnas.0712027105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96(1):161–170. doi:10.1007/s00253-012-4051-y

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Bai X, Li Z, Wang S, Guan Z, Lu X (2013) A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar. Appl Microbiol Biotechnol 97:7317–7324. doi:10.1007/s00253-013-4820-2

    Article  CAS  PubMed  Google Scholar 

  • Ji XF, Wang Y, Zhang C, Bai XF, Zhang WC, Lu XM (2014) Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii. Appl Environ Microbiol 80(15):4511–4518. doi:10.1128/Aem. 00687-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Koropatkin NM, Pakrasi HB, Smith TJ (2006) Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. Proc Natl Acad Sci U S A 103(26):9820–9825. doi:10.1073/pnas.0602517103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koropatkin NM, Martens EC, Gordon JI, Smith TJ (2008) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16:1105–1115. doi:10.1016/j.str.2008.03.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H (2014) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506(7489):498–502. doi:10.1038/nature12907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackenzie AK, Pope PB, Pedersen HL, Gupta R, Morrison M, Willats WG, Eijsink VG (2012) Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose. Appl Environ Microbiol 78(16):5935–5937. doi:10.1128/AEM. 01164-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manfredi P, Renzi F, Mally M, Sauteur L, Schmaler M, Moes S, Jeno P, Cornelis GR (2011) The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol Microbiol 81(4):1050–1060. doi:10.1111/j.1365-2958.2011.07750.x

    Article  CAS  PubMed  Google Scholar 

  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284:24673–24677. doi:10.1074/jbc.R109.022848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI (2011) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9(12):e1001221. doi:10.1371/journal.pbio.1001221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022

    CAS  PubMed Central  PubMed  Google Scholar 

  • McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875. doi:10.1128/AEM. 01495-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McBride MJ, Liu W, Lu X, Zhu Y, Zhang W (2014) The family Cytophagaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes, vol 11, 4th edn. Springer-Verlag, Berlin, pp 577–593

    Google Scholar 

  • Metcalf WW, Jiang W, Daniels LL, Kim S-K, Haldimann A, Wanner BL (1996) Conditionally replicative and conjugative plasmids carrying lacZa for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13

    Article  CAS  PubMed  Google Scholar 

  • Naas AE, Mackenzie AK, Mravec J, Schuckel J, Willats WG, Eijsink VG, Pope PB (2014) Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? MBio 5(4):e01401–14. doi:10.1128/mBio. 01401-14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reeves AR, D’Elia JN, Frias J, Salyers AA (1996) A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reichenbach H (1992) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KM (eds) The prokaryotes. Springer-Verlag, New York, pp 3631–3675

    Chapter  Google Scholar 

  • Salyers AA, Reeves A, D’Elia J (1996) Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides. J Ind Microbiol 17:470–476

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shipman JA, Cho KH, Siegel HA, Salyers AA (1999) Physiological characterization of susG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181:7206–7211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182:5365–5372. doi:10.1128/JB.182.19.5365-5372.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technol 2:784–791

    Article  Google Scholar 

  • Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg JL (2010) Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations. Cell 141(7):1241–1252. doi:10.1016/j.cell.2010.05.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanier RY (1942) The cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6:143–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wang Z, Cao J, Guan Z, Lu X (2014) FLP-FRT-based method for unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii. Appl Environ Microbiol 80:6037–6045. doi:10.1128/AEM. 01785-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705. doi:10.1128/JB.00481-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16(4):723–727. doi:10.1007/S10570-009-9326-9

    Article  CAS  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263. doi:10.1016/j.mib.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Winogradsky S (1929) E’tudes sur la microbiologie du sol. Annales de L’Institut Pasteur 43:549–633

    CAS  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546. doi:10.1128/AEM. 00225-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Ji X, Chen N, Li P, Liu W, Lu X (2012) Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 93(2):697–705. doi:10.1007/s00253-011-3572-0

    Article  CAS  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651. doi:10.1002/prot.21018

    Article  CAS  PubMed  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. doi:10.1093/bioinformatics/btq249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98(15):6679–6687. doi:10.1007/s00253-014-5640-8

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98:763–775. doi:10.1007/s00253-013-5355-2

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Li H, Zhou H, Chen G, Liu W (2010) Cellulose and cellulodextrin utilization by the cellulolytic bacterium Cytophaga hutchinsonii. Bioresour Technol 101:6432–6437. doi:10.1016/j.biortech.2010.03.041

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhou H, Bi Y, Zhang W, Chen G, Liu W (2013) Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol 97(9):3925–3937. doi:10.1007/s00253-012-4259-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by MCB-1021721 from the National Science Foundation (MJM), by a University of WI-Milwaukee Research Growth Initiative Grant (MJM), and by the Host Microbiome Initiative at the University of Michigan Medical School (NMK).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. McBride.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Kwiatkowski, K.J., Yang, T. et al. Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization. Appl Microbiol Biotechnol 99, 6339–6350 (2015). https://doi.org/10.1007/s00253-015-6555-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6555-8

Keywords

Navigation