Skip to main content
Log in

Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytophaga hutchinsonii is an abundant aerobic cellulolytic bacterium that rapidly digests crystalline cellulose in a contact-dependent manner. The different roles of various predicted glycoside hydrolases and the detailed mechanism used by C. hutchinsonii in cellulose digestion are, however, not known. In this study, an endoglucanase belonging to glycoside hydrolase family 5 (GH5) named as ChCel5A was isolated from the outer membrane of C. hutchinsonii. The catalytic domain of ChCel5A exhibited typical endoglucanase activity and was capable of hydrolyzing insoluble cellulose with cellobiose and cellotriose as the predominant digestion products. Site-directed mutagenesis identified two aromatic amino acids in ChCle5A, W61 and W308, that dramatically decreased its hydrolytic activity toward filter paper while causing only a slight decrease in carboxymethylcellulase (CMCase) activity. Disruption of chu_1107 encoding ChCel5A caused no drastic effect on the growth parameters on cellulose for the resulting mutant strain with negligible reduction in the specific CMCase activities for intact cells. The demonstration of targeted gene inactivation capability for C. hutchinsonii has provided an opportunity to improve understanding of the details of the mechanism underlying its efficient utilization of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bortoli-German I, Haiech J, Chippaux M, Barras F (1995) Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ. J Mol Biol 246(1):82–94

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chang WT, Thayer DW (1977) The cellulase system of a Cytophaga species. Can J Microbiol 23(9):1285–1292

    Article  CAS  Google Scholar 

  • Chapon V, Czjzek M, El Hassouni M, Py B, Juy M, Barras F (2001) Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J Mol Biol 310(5):1055–1066

    Article  CAS  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528

    Article  CAS  Google Scholar 

  • Gong J, Forsberg CW (1993) Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase. J Bacteriol 175(21):6810–6821

    CAS  Google Scholar 

  • Li LY, Shoemaker NB, Salyers AA (1995) Location and characteristics of the transfer region of a bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 177(17):4992–4999

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  Google Scholar 

  • McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62(8):3017–3022

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–427

    CAS  Google Scholar 

  • Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci U S A 107(41):17727–17732

    Article  CAS  Google Scholar 

  • Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME, Crowley MF, Beckham GT (2011) Multiple functions of aromatic–carbohydrate interactions in a processive cellulase examined with molecular simulation. J Biol Chem 286(47):41028–41035

    Article  CAS  Google Scholar 

  • Perret S, Maamar H, Belaich JP, Tardif C (2004) Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum. Mol Microbiol 51(2):599–607

    Article  CAS  Google Scholar 

  • Russell JB (1985) Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol 49(3):572–576

    CAS  Google Scholar 

  • Stanier RY (1942) The Cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6(3):143–196

    CAS  Google Scholar 

  • Tolonen AC, Chilaka AC, Church GM (2009) Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 74(6):1300–1313

    Article  CAS  Google Scholar 

  • Walker E, Warren FL (1938) Decomposition of cellulose by Cytophaga. I. Biochem J 32(1):31–43

    CAS  Google Scholar 

  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191(18):5697–5705

    Article  CAS  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    Article  CAS  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73(11):3536–3546

    Article  CAS  Google Scholar 

  • Xu Y, Ji X, Chen N, Li P, Liu W, Lu X (2011) Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 93(2):697–705

    Article  Google Scholar 

  • Yao Q, Sun TT, Liu WF, Chen GJ (2008) Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 72(11):2799–2805

    Article  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    Article  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2005a) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102(20):7321–7325

    Article  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2005b) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6(3):1510–1515

    Article  CAS  Google Scholar 

  • Zhu Y, Li H, Zhou H, Chen G, Liu W (2010) Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchinsonii. Bioresour Technol 101(16):6432–6437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for Dr. MJ McBride for providing the plasmids and strains and critical reading of this manuscript. This work is supported by grants from the National Basic Research Program (2011CB707402), the National Natural Science Foundation of China (31170762), New Century Excellent Talents in University (NCET-10-0546), Shandong Provincial Funds for Distinguished Young Scientists (JQ201108), and Independent Innovation Foundation of Shandong University, IIFSDU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Liu.

Additional information

Yongtao Zhu and Hong Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4093 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhou, H., Bi, Y. et al. Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii . Appl Microbiol Biotechnol 97, 3925–3937 (2013). https://doi.org/10.1007/s00253-012-4259-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4259-x

Keywords

Navigation