Skip to main content
Log in

Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W (1990) Basic local alignment search tool. J Mol Biol 403–410

  • Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12:775–84

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Nechitaylo TY, López-Cortés N, Ghazi A, Guazzaroni M-E, Polaina J, Strittmatter AW, Reva O, Waliczek A, Yakimov MM, Golyshina OV, Ferrer M, Golyshin PN (2010) Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Appl Environ Microbiol 76:5934–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blixt O, van Die I, Norberg T, van den Eijnden DH (1999) High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1→ 3Gal and GalNAc beta 1→3 Gal linkag. Glycobiology 9:1061–71

    Article  CAS  PubMed  Google Scholar 

  • Bode L (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 67(Suppl 2):S183–91

    Article  PubMed  Google Scholar 

  • Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boehm G, Stahl B (2007) Oligosaccharides from milk. J Nutr 847–849

  • Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122

    Article  PubMed Central  PubMed  Google Scholar 

  • Cabezas J (1989) Some comments on the type reference of the official nomenclature (IUB) for beta-N-acetylglucosaminidase, beta-N-acetylhexosaminidase and beta-N-acetylgalactosaminidase. Biochem J 261:1059–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coppa G, Pierani P, Zampini L, Carloni I, Carlucci A, Gabrielli O (1999) Oligosaccharides in human milk during different phases of lactation. Acta Paediatr 430:89–94

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Dos PM, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  • Findley SD, Mormile MR, Sommer-Hurley A, Zhang X-C, Tipton P, Arnett K, Porter JH, Kerley M, Stacey G (2011) Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol 77:8106–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, Giuliani F, Bertino E, Fabris C, Coppa GV (2011) Preterm milk oligosaccharides during the first month of lactation. Pediatrics 128:e1520–31

    Article  PubMed  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–24

    Article  PubMed  Google Scholar 

  • Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito Y, Sato S, Mori M, Ogawa T (1988) An Efficient Approach to the Synthesis of Lacto-N-Triosylceramide and Related Substances. J Carbohydr Chem 7:359–376

    Article  CAS  Google Scholar 

  • Jers C, Michalak M, Larsen DM, Kepp KP, Li H, Guo Y, Kirpekar F, Meyer AS, Mikkelsen JD (2014) Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One 9:e83902

    Article  PubMed Central  PubMed  Google Scholar 

  • Kameyama A, Ishida H, Kiso M, Hasegawa A (1990) Stereoselective synthesis of sialyl-lactotetraosylceramide and sialylneolactotetraosylceramide. Carbohydr Res 200:269–85

    Article  CAS  PubMed  Google Scholar 

  • Keyhani NO, Wang LX, Lee YC, Roseman S (2000) The chitin disaccharide, N, N′-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. J Biol Chem 275:33084–90

  • Kim Y, Chhor G, Clancy S, Joachimiak A Crystal structure of beta-N-acetylhexosaminidase from Arthrobacter aureus. 2011 To be Publ.

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol 5:46–56

    Article  CAS  PubMed  Google Scholar 

  • Kobata A (2003) Possible application of milk oligosaccharides for drug development. Chang Gung Med J 620–636

  • Kościelak J, Zdebska E, Wilczyńska Z, Miller-Podraza H, Dzierzkowa-Borodej W (1979) Immunochemistry of Li-active glycosphingolipids of erythrocytes. Eur J Biochem 96:331–7

    Article  PubMed  Google Scholar 

  • Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mark BL, Vocadlo DJ, Knapp S, Triggs-Raine BL, Withers SG, James MN (2001) Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase. J Biol Chem 276:10330–7

    Article  CAS  PubMed  Google Scholar 

  • Matahira Y, Tashiro A, Sato T, Kawagishi H, Usui T (1995) Enzymic synthesis of lacto-N-triose II and its positional analogues. Glycoconj J 12:664–671

    Article  CAS  PubMed  Google Scholar 

  • Matsuo I, Kim S, Yamamoto Y, Ajisaka K, Maruyama J, Nakajima H, Kitamoto K (2003) Cloning and overexpression of beta-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide. Biosci Biotechnol Biochem 67:646–50

    Article  CAS  PubMed  Google Scholar 

  • McIlvaine T (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • McVeagh P, Miller JB (1997) Review article human milk oligosaccharides: only the breast. J Paediatr Child Health 33:281–286

    Article  CAS  PubMed  Google Scholar 

  • Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, Ashida H, Yamamoto K (2010) Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 20:1402–9

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Tashiro A, Itoh T, Usui T (1997) Enzymic synthesis of 3′-O- and 6′-O-N-acetylglucosaminyl-N-acetyllactosaminide glycosides catalyzed by b-N-acetyl-d-hexosaminidase from Nocardia orientalis. Biochim Biophys Acta-Gen Subj 1335:326–334

    Article  CAS  Google Scholar 

  • Murata T, Inukai T, Suzuki M (1999) Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj J 195:189–195

    Article  Google Scholar 

  • Nguyen HA, Nguyen T, Haltrich D (2012) Human milk oligosaccharides: chemical structure, functions and enzymatic synthesis. Enzyme 10:693–706

    Google Scholar 

  • Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0—remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38:W576–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson K, Eliasson A, Pan H, Rohman M (1999) Synthesis of disaccharide derivatives employing β-N-acetyl-d-hexosaminidase, β-d-galactosidase and β-d-glucuronidase. Biotechnol Lett 11–15

  • Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes analysis toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20:1574–84

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Avelizapa LI, Cruz-Camarillo R, Guerrero MI, Rodriguez-Vazquez R, Ibarra JE (1999) Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J Microbiol Biotechnol 15:299–308

    Article  Google Scholar 

  • Schomburg I, Hofmann O, Baensch C, Chang A, Schomburg D (2000) Enzyme data and metabolic information: BRENDA, a resource for research in biology, biochemistry, and medicine. Gene Funct Dis 3–4

  • Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  • Singh S, Packwood J, Samuel CJ, Critchley P, Crout DH (1995) Glycosidase-catalysed oligosaccharide synthesis: preparation of N-acetylchitooligosaccharides using the beta-N-acetylhexosaminidase of Aspergillus oryzae. Carbohydr Res 279:293–305

    Article  CAS  PubMed  Google Scholar 

  • Slámová K, Bojarová P, Petrásková L, Kren V (2010) β-N-acetylhexosaminidase: what’s in a name…? Biotechnol Adv 28:682–93

    Article  PubMed  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–34

    Article  CAS  PubMed  Google Scholar 

  • Synstad B, Vaaje-Kolstad G, Cederkvist FH, Saua SF, Horn SJ, Eijsink VGH, Sørlie M (2008) Expression and characterization of endochitinase C from Serratia marcescens BJL200 and its purification by a one-step general chitinase purification method. Biosci Biotechnol Biochem 72:715–723

    Article  CAS  PubMed  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Li F, Chen G, Liu W (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–7

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–52

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Research Council in Denmark, http://fivu.dk; The project number is 09-067134, The title is “Enzymatic production of human milk oligosaccharides”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørn Dalgaard Mikkelsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyffenegger, C., Nordvang, R.T., Zeuner, B. et al. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases. Appl Microbiol Biotechnol 99, 7997–8009 (2015). https://doi.org/10.1007/s00253-015-6550-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6550-0

Keywords

Navigation