Skip to main content
Log in

Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A cutinase-like enzyme from Saccharomonospora viridis AHK190, Cut190, hydrolyzes the inner block of polyethylene terephthalate (PET); this enzyme is a member of the lipase family, which contains an α/β hydrolase fold and a Ser-His-Asp catalytic triad. The thermostability and activity of Cut190 are enhanced by high concentrations of calcium ions, which is essential for the efficient enzymatic hydrolysis of amorphous PET. Although Ca2+-induced thermostabilization and activation of enzymes have been well explored in α-amylases, the mechanism for PET-degrading cutinase-like enzymes remains poorly understood. We focused on the mechanisms by which Ca2+ enhances these properties, and we determined the crystal structures of a Cut190 S226P mutant (Cut190S226P) in the Ca2+-bound and free states at 1.75 and 1.45 Å resolution, respectively. Based on the crystallographic data, a Ca2+ ion was coordinated by four residues within loop regions (the Ca2+ site) and two water molecules in a tetragonal bipyramidal array. Furthermore, the binding of Ca2+ to Cut190S226P induced large conformational changes in three loops, which were accompanied by the formation of additional interactions. The binding of Ca2+ not only stabilized a region that is flexible in the Ca2+-free state but also modified the substrate-binding groove by stabilizing an open conformation that allows the substrate to bind easily. Thus, our study explains the structural basis of Ca2+-enhanced thermostability and activity in PET-degrading cutinase-like enzyme for the first time and found that the inactive state of Cut190S226P is activated by a conformational change in the active-site sealing residue, F106.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amada K, Kwon HJ, Haruki M, Morikawa M, Kanaya S (2001) Ca2+-induced folding of a family 1.3 lipase with repetitive Ca2+ binding motifs at the C-terminus. FEBS Lett 509:17–21

    Article  CAS  PubMed  Google Scholar 

  • Arockiasamy A, Aggarwal A, Savva CG, Holzenburg A, Sacchettini JC (2011) Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site. Protein Sci 20:827–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Cowtan K (2008) Fitting molecular fragments into electron density. Acta Crystallogr D Biol Crystallogr 64:83–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Emsley P, Lohkamp B, Scott W, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, Steinkellner G, Gruber K, Schwab H, Guebitz GM (2013) Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 110:2581–2590

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800

    Article  CAS  Google Scholar 

  • Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 95:419–430

    Google Scholar 

  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK (2000) Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64:280–286

    Article  CAS  PubMed  Google Scholar 

  • Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, Kawai F (2012) Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 97:771–775

    Article  CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 Å resolution. J Mol Biol 246:545–559

    Article  CAS  PubMed  Google Scholar 

  • Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis alpha-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292

    Article  CAS  PubMed  Google Scholar 

  • Morris RJ, Perrakis A, Lamzin VS (2002) ARP/wARP’s model-building algorithms. I. The main chain. Acta Crystallogr D Biol Crystallogr 58:968–975

    Article  PubMed  Google Scholar 

  • Müller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolysis using a hydrolase from Thermobifida fusca. Macromol Rapid Commun 26:1400–1405

    Article  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  • Niesen FH, Berglund H, Vadadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Pinsirodom P, Parkin KL (2001) Current protocols in food analytical chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Pio TF, Macedo GA (2009) Cutinases: properties and industrial applications. Adv Appl Microbiol 66:77–95

    Article  CAS  PubMed  Google Scholar 

  • Ribitsch D, Yebra AO, Zitzenbacher S, Wu J, Nowitsch S, Steinkellner G, Greimel K, Doliska A, Oberdorfer G, Gruber CC, Gruber K, Schwab H, Stana-Kleinschek K, Acero EH, Guebitz GM (2013) Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. Biomacromolecules 14:1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Ronkvist Å, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Roth C, Wei R, Oeser T, Then J, Föllner C, Zimmermann W, Sträter N (2014) Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol, in press

  • Simons JFA, Van Kampen MD, Ubarretxena-Belandia I, Cox RC, Alves dos Santos CM, Egmond MR, Verheij HM (1999) Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. Biochemistry 38:2–10

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman S, You D-J, Kanaya E, Koga Y, Kanaya S (2014) Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biogeosciences 53:1858–1869

    CAS  Google Scholar 

  • Thumarat U, Nakamura R, Kawabata T, Suzuki H, Kawai F (2012) Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl Microbiol Biotechnol 95:419–430

    Article  CAS  PubMed  Google Scholar 

  • Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  • Vertommen MA, Nierstrasz VA, Veer Mv, Warmoeskerken MM (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386

  • Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W (2014) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 4:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Yadav JK (2012) A differential behavior of α-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2. Int J Biol Macromol 51:146–2152

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Chen J, Wu J (2013) Enhanced activity toward PET by site-directed mutagenesis of Thermobifida fusca cutinase-CBM fusion protein. Carbohydr Polym 97:124–129

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann W, Billig S (2011) Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv Biochem Engin/Biotechnol 125:97–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Platform for Drug Design, Discovery and Development of the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT). We would like to thank the scientists and staff at the Photon Factory. The synchrotron radiation experiments were conducted at the beamlines AR-NW12 and BL-17A at the Photon Factory, Tsukuba, Japan (Proposal No. 2013G658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Tanokura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyakawa, T., Mizushima, H., Ohtsuka, J. et al. Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 99, 4297–4307 (2015). https://doi.org/10.1007/s00253-014-6272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6272-8

Keywords

Navigation