Skip to main content
Log in

Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant polyesterase (Est119) from Thermobifida alba AHK119 was purified by two chromatography steps. The final protein was observed as a single band in SDS–PAGE, and the specific activity of Est119 for p-nitrophenyl butyrate was 2.30 u/mg. Purified Est119 was active with aliphatic and aliphatic-co-aromatic polyesters. Kinetic data indicated that p-nitrophenyl butyrate (pNPB) or hexanoate was the best substrate for Est119 among p-nitrophenyl acyl esters. Calcium was required for full activity and thermostability of Est119, which was stable at 50 °C for 16 h. Three-dimensional modeling and biochemical characterization showed that Est119 is a typical cutinase-type enzyme that has the compact ternary structure of an α/β-hydrolase. Random and site-directed mutagenesis of wild-type Est119 resulted in improved activity with increased hydrophobic interaction between the antiparallel first and second β-sheets (A68V had the greatest effect). Introduction of a proline residue (S219P) in a predicted substrate-docking loop increased the thermostability. The specific activity of the A68V/S219P mutant on pNPB was increased by more than 50-fold over the wild type. The mutant was further activated by 2.6-fold (299 u/mg) with 300 mM Ca2+ and was stable up to 60 °C with 150 mM Ca2+. Another identical gene was located in tandem in the upstream of est119.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amada K, Kwon HJ, Haruki M, Morikawa M, Kanaya S (2001) Ca2+-induced folding of a family 1.3 lipase with repetitive Ca2+ binding motifs at the C-terminus. FEBS Lett 509:17–21

    Article  CAS  Google Scholar 

  • Angkawidjaja C, You DJ, Matsumura H, Kuwahara K, Koga Y, Takano K, Kanaya S (2007) Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation. FEBS Lett 581:5060–5064

    Article  CAS  Google Scholar 

  • Arpigny JL, Jäger K (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Bellia G, Tosin M, Floridi G, Degli-Innocenti F (1999) Activated vermiculite, a solid bed for testing biodegradability under composting conditions. Polym Degrad Stab 66:65–79

    Article  CAS  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  Google Scholar 

  • Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol Lett 26:15–19

    Article  CAS  Google Scholar 

  • Carvalho CML, Aires-Barros MR, Cabral JMS (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  CAS  Google Scholar 

  • Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862

    Article  CAS  Google Scholar 

  • Dresler K, Heuvel J, Müller RJ, Deckwer WD (2006) Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst Eng 29:169–183

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Hoang KC, Tseng M, Shu WJ (2007) Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain. Biodegradation 18:333–342

    Article  CAS  Google Scholar 

  • Hofer P, Fringeli US, Hopff WH (1984) Activation of acetylcholinesterase by monovalent (Na+, K+) and divalent (Ca2+, Mg2+) cations. Biochemistry 23:2730–2734

    Article  CAS  Google Scholar 

  • Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, Kawai F (2008) Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts. J Polymer Environ 16:103–108

    Article  CAS  Google Scholar 

  • Hu X, Thumarat U, Zhang X, Tang M, Kawai F (2010) Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 87:771–779

    Article  CAS  Google Scholar 

  • Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    Article  CAS  Google Scholar 

  • Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym Degrad Stab 96:1342–1348

    Article  CAS  Google Scholar 

  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK (2000) Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64:280–286

    Article  CAS  Google Scholar 

  • Kleeberg I, Hetz C, Kroppenstedt RM, Müller RJ, Deckwer WD (1998) Biodegradation of aliphatic-aromatic copolyester-by Thermomonospora fusca and other thermophillic compost isolates. Appl Environ Microbiol 64:1731–1735

    CAS  Google Scholar 

  • Kleeberg I, Welzel K, VandenHeuvel J, Müller RJ, Deckwer WD (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6:262–270

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Longieras A, Copinet A, Bureau G, Tighzert L (2004) An inert solid medium for simulation of material in compost carbon balance achievement. Polym Degrad Stab 83:187–194

    Article  CAS  Google Scholar 

  • Lykidis A, Mavromatis K, Ivanova I, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    Article  CAS  Google Scholar 

  • Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    Article  CAS  Google Scholar 

  • Ma X, Wang ZS, Li SX, Shen Q, Yuan QS (2006) Effect of CaCl2 as activity stabilizer on purification of heparinase I from Flavobacterium heparinum. J Chromatogr B 843:209–215

    Article  CAS  Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    Article  CAS  Google Scholar 

  • Niu WN, Li ZP, Zhang DW, Yu MR, Tan TW (2006) Improved thermostability and the optimum temperature of Rhizopus arrhizus lipase by directed evolution. J Mol Catal B: Enzym 43:33–39

    Article  CAS  Google Scholar 

  • Ollis DL, Cheahm E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldma A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  • Pio TF, Macedo GA (2009) Cutinases: properties and industrial applications. Adv Appl Microbiol 66:77–95

    Article  CAS  Google Scholar 

  • Phithakrotchanakoon C, Rudeekit Y, Tanapongpipat S, Leejakpai T, Aiba S, Noda I, Champreda V (2009) Microbial degradation and physico-chemical alteration of polyhydroxyalkanoates by a thermophilic Streptomyces sp. Biologia 64:246–251

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Simons JFA, Van Kampen MD, Ubarretxena-Belandia I, Cox RC, Alves dos Santos CM, Egmond MR, Verheij HM (1999) Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. Biochemistry 38:2–10

    Article  CAS  Google Scholar 

  • Sinsereekul N, Wangkam T, Thamchaipenet A, Srikhirin T, Eurwilaichitr L, Champreda V (2010) Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmone resonance. Appl Microbiol Biotechnol 86:1775–1784

    Article  CAS  Google Scholar 

  • Suzuki Y, Hatagaki K, Oda H (1991) A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability. Appl Microbiol Biotechnol 34:707–714

    Article  CAS  Google Scholar 

  • Tsutsumi M, Otaki JM (2011) Parallel and antiparallel β-strands differ in amino acid composition and availability of short constituent sequences. J Chem Inf Model Article ASAP (DOI: 10.1021/ci200027d. Publication Date (Web): April 26, 2011)

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Wei Y, Swenson L, Castro C, Derewenda U, Minor W, Arai H, Aoki J, Inoue K, Servin-Gonzalez L, Derewenda ZS (1988) Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9°A resolution. Structure 6:511–519

    Article  Google Scholar 

  • Yang Y, Malten M, Grote A, Jahn D, Deckwer W-D (2007) Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium. Biotechnol Bioeng 96:780–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by funds from the Institute for Fermentation, Osaka (Japan) to F. K. We appreciate Prof. Y. Yamamoto, Institute for Plant Resources, Okayama University, for her kind help in atomic absorption spectrometry measurements. We are grateful to Dr. T. Nakajima-Kambe, University of Tsukuba, for his kind supply of PBSA (Bionolle™EM-301). This work is linked with the Asia Core Program supported by JSPS (Japan) and NRCT (Thailand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusako Kawai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

SDS-PAGE of Est119 purified by one-step and two-step chromatographies. 1, protein standards; 2, crude cell lysate from E. coli Rosetta-gami B (DE3) harboring pQE80L-est119 induced with 0.1 mM IPTG; 3, Purified Est119 by one-step chromatography on a Ni-Sepharose 6 Fast Flow column; 4, Purified Est119 by the second step chromatography on a Mono Q anion exchange column. (DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thumarat, U., Nakamura, R., Kawabata, T. et al. Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl Microbiol Biotechnol 95, 419–430 (2012). https://doi.org/10.1007/s00253-011-3781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3781-6

Keywords

Navigation