Skip to main content
Log in

Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Alexander NA, Jeffries TW (1990) Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzym Microb Technol 12:2–19

    Article  CAS  Google Scholar 

  • Aoki S, Ito-Kuwa S (1982) Respiration of Candida albicans in relation to its morphogenesis. Plant Cell Physiol 23:721–726

    Google Scholar 

  • Armstrong DW, Yamazaki H (1984) Effect of iron and EDTA on ethyl acetate accumulation in Candida utilis. Biotechnol Lett 6:819–824

    Article  CAS  Google Scholar 

  • Armstrong DW, Martin SM, Yamazaki H (1984a) Production of ethyl acetate from dilute ethanol solutions by Candida utilis. Biotechnol Bioeng 26:1038–1041

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DW, Martin SM, Yamazaki H (1984b) Production of acetaldehyde from ethanol by Candida utilis. Biotechnol Lett 6:183–188

    Article  CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P, Margaritus A (1982) Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem Artichoke juice. Appl Environ Microbiol 44:1325–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  PubMed  Google Scholar 

  • Bol J, Knol W, ten Brik B (1987) Optimization of the production of ethyl acetate from ethanol by Hansenula anomala. Dechema Monogr 105:235–236

    Google Scholar 

  • Büschges R, Bahrenberg G, Zimmermann M, Wolf K (1994) NADH:ubiquinone oxidoreductase in obligate aerobic yeasts. Yeast 10:475–479

    Article  PubMed  Google Scholar 

  • Castrillo JI, Kaliterna J, Weusthuis RA, van Dijken JP, Pronk JT (1996) High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures. Biotechnol Bioeng 49:621–628

    Article  CAS  PubMed  Google Scholar 

  • Corzo G, Revah S, Christen P (1995) Effect of oxygen on the ethyl acetate production from continuous ethanol stream by Candida utilis in submerged cultures. Dev Food Sci 37B:1141–1154

    Article  CAS  Google Scholar 

  • Cuillel M (2009) The dual personality of ionic copper in biology. J Incl Phenom Macrocycl Chem 65:165–170

    Article  CAS  Google Scholar 

  • Davies R, Falkiner EA, Wilkinson JF, Peel JL (1951) Ester formation by yeasts 1. Ethyl acetate formation by Hansenula species. Biochem J 49:58–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Downie JA, Garland PB (1973) An antimycin A- and cyanide-resistant variant of Candida utilis arising during copper-limited growth. Biochem J 134:1051–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duboc P, von Stockar U (1998) Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol Bioeng 58:428–439

    Article  CAS  PubMed  Google Scholar 

  • Ferrero I, Viola A-M, Goffeau A (1981) Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. Antonie Van Leeuwenhoek 47:11–24

    Article  CAS  PubMed  Google Scholar 

  • Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435

    Article  CAS  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghaly AE, El-Taweel AA (1995) Effect of nutrient supplements addition on ethanol production from cheese whey using Candida pseudotropicalis under batch condition. Appl Biochem Biotechnol 53:107–131

    Article  CAS  Google Scholar 

  • González Siso MI (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  • Gray WD (1949) Initial studies on the metabolism of Hansenula anomala (Hansen) Sydow. Am J Bot 36:475–480

    Article  CAS  Google Scholar 

  • Grubb CF, Mawson AJ (1993) Effects of elevated solute concentrations on the fermentation of lactose by Kluyveromyces marxianus Y-113. Biotechnol Lett 15:621–626

  • Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384

    Article  PubMed  Google Scholar 

  • Hack CJ, Marchant R (1998) Characterisation of a novel thermotolerant yeast, Kluyveromyces marxianus var marxianus: development of an ethanol fermentation process. J Ind Microbiol Biotechnol 20:323–327

    Article  CAS  Google Scholar 

  • Hederstedt L, Rutberg L (1981) Succinate dehydrogenase—a comparative review. Microbiol Rev 45:542–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holz M (2011) Gentechnische Optimierung der Hefe Yarrowia lipolytica zur biotechnologischen Produktion von Succinat. Dissertation, Dresden University of Technology, Dresden

  • Holz M, Barth G (2013) Effects of the fungicide carboxin on growth, succinate dehydrogenase activity and succinate production of the non-conventional yeast Yarrowia lipolytica. In: Proc Ann VAAM Conf 2013. Springer, Heidelberg, pp 155–156

  • Hortsch R, Löser C, Bley T (2008) A two-stage CSTR cascade for studying the effect of inhibitory and toxic substances in bioprocesses. Eng Life Sci 8:650–657

    Article  CAS  Google Scholar 

  • Kallel-Mhiri H, Miclo A (1993) Mechanism of ethyl acetate synthesis by Kluyveromyces fragilis. FEMS Microbiol Lett 111:207–212

    Article  CAS  Google Scholar 

  • Kallel-Mhiri H, Miclo A (1995) Kinetics of lactose transport in Kluyveromyces fragilis grown in a chemostat on diluted whey permeate. J Ind Microbiol 15:45–48

    Article  CAS  Google Scholar 

  • Kallel-Mhiri H, Engasser JM, Miclo A (1993) Continuous ethyl acetate production by Kluyveromyces fragilis on whey permeate. Appl Microbiol Biotechnol 40:201–205

    Article  CAS  Google Scholar 

  • Kerscher SJ (2000) Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta 1459:274–283

    Article  CAS  PubMed  Google Scholar 

  • Krebs HA, Gurin S, Eggleston LV (1952) The pathway of oxidation of acetate in baker’s yeast. Biochem J 51:614–628

    CAS  PubMed Central  Google Scholar 

  • Kusano M, Sakai Y, Kato N, Yoshimoto H, Tamai Y (1999) A novel hemiacetal dehydrogenase activity involved in ethyl acetate synthesis in Candida utilis. J Biosci Bioeng 87:690–692

    Article  CAS  PubMed  Google Scholar 

  • Lancaster CRD (2002) Succinate:quinone oxidoreductases: an overview. Biochim Biophys Acta 1553:1–6

    Article  CAS  PubMed  Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26

    Article  Google Scholar 

  • Laurema S, Erkama J (1968) Formation of ethyl acetate in Hansenula anomala. Acta Chem Scand 22:1482–1486

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of coenzyme Q in mitochondrial electron transport. Mitochondrion 7S:S8–S33

    Article  Google Scholar 

  • Lertwattanasakul N, Shigemoto E, Rodrussamee N, Limtong S, Thanonkeo P, Yamada M (2009) The crucial role of alcohol dehydrogenase Adh3 in Kluyveromyces marxianus mitochondrial metabolism. Biosci Biotechnol Biochem 73:2720–2726

    Article  CAS  PubMed  Google Scholar 

  • Levi S, Rovida E (2009) The role of iron in mitochondrial function. Biochim Biophys Acta 1790:629–636

    Article  CAS  PubMed  Google Scholar 

  • Liti G, Wardrop FR, Cardinali G, Martini A, Walker GM (2001) Differential responses to antimycin A and expressions of the Crabtree effect in selected Klyuveromyces spp. Ann Microbiol 51:235–243

    CAS  Google Scholar 

  • Lodolo EJ, O’Connor-Cox ESC, Axcell BC (1999) Evidence of antimycin-insensitive respiration in a commercial brewing yeast. J Inst Brew 105:35–43

    Article  CAS  Google Scholar 

  • Löser C, Schröder A, Deponte S, Bley T (2005) Balancing the ethanol formation in continuous bioreactors with ethanol stripping. Eng Life Sci 5:325–332

    Article  Google Scholar 

  • Löser C, Urit T, Nehl F, Bley T (2011) Screening of Kluyveromyces strains for the production of ethyl acetate: design and evaluation of a cultivation system. Eng Life Sci 11:369–381

    Article  Google Scholar 

  • Löser C, Urit T, Förster S, Stukert A, Bley T (2012) Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation. Appl Microbiol Biotechnol 96:685–696

    Article  PubMed  Google Scholar 

  • Löser C, Urit T, Stukert A, Bley T (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol 163:17–23

    Article  PubMed  Google Scholar 

  • Löser C, Urit T, Bley T (2014) Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 98:5397–5415

    Article  PubMed  Google Scholar 

  • Lynen F (1943) Zum biologischen Abbau der Essigsäure. II. Die Wirkung von Malonsäure auf den Abbau der Essigsäure durch Hefe. Liebigs Ann Chem 554:40–68

    Article  CAS  Google Scholar 

  • Manjare SD, Ghoshal AK (2006a) Comparison of adsorption of ethyl acetate on activated carbon and molecular sieves 5A and 13X. J Chem Eng Data 51:1185–1189

    Article  CAS  Google Scholar 

  • Manjare SD, Ghoshal AK (2006b) Adsorption equilibrium studies for ethyl acetate vapor and E-Merck 13X molecular sieve system. Sep Purif Technol 51:118–125

    Article  CAS  Google Scholar 

  • Manjare SD, Ghoshal AK (2006c) Studies on adsorption of ethyl acetate vapor on activated carbon. Ind Eng Chem Res 45:6563–6569

    Article  CAS  Google Scholar 

  • Mathre DE (1971) Mode of action of oxathiin systemic fungicides. III. Effect on mitochondrial activities. Pestic Biochem Physiol 1:216–224

    Article  CAS  Google Scholar 

  • Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47:195–203

    Article  CAS  Google Scholar 

  • Murray DB, Haynes K, Tomita M (2011) Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta 1810:945–958

    Article  CAS  PubMed  Google Scholar 

  • Opekarová M, Sigler K (1987) Separation of transport and metabolic steps in the uptake of succinate by Kluyveromyces fragilis. Folia Microbiol 32:200–205

    Article  Google Scholar 

  • Overkamp KM, Bakker BM, Steensma HY, van Dijken JP, Pronk JT (2002) Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Yeast 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Shaffer CEH, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25

    Article  CAS  PubMed  Google Scholar 

  • Pesta G, Meyer-Pittroff R, Russ W (2007) Utilization of whey. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 193–207

    Chapter  Google Scholar 

  • Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499

    Article  CAS  PubMed  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manag 110:48–68

    Article  CAS  Google Scholar 

  • Queiros O, Casal M, Althoff S, Moradas-Ferreira P, Leao C (1998) Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14:401–407

    Article  CAS  PubMed  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289

    Article  CAS  PubMed  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188

    Article  CAS  PubMed  Google Scholar 

  • Saliola M, Sponziello M, D’Amici S, Lodi T, Falcone C (2008) Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res 8:697–705

    Article  CAS  PubMed  Google Scholar 

  • Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxidoreductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36:930–936

    Article  CAS  Google Scholar 

  • Strong FM (1958) Topics in microbial chemistry. Wiley, New York

    Google Scholar 

  • Szczodrak J, Szewcuk D, Rogalski J, Fiedurek J (1997) Selection of yeast strain and fermentation conditions for high-yield ethanol production from lactose and concentrated whey. Acta Biotechnol 17:51–61

    Article  CAS  Google Scholar 

  • Tabachnick J, Joslyn MA (1953) Formation of esters by yeast. I. The production of ethyl acetate by standing surface cultures of Hansenula anomala. J Bacteriol 65:1–9

  • Tarrío N, Becerra M, Cerdán ME, González Siso MI (2006) Reoxidation of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 6:371–380

    Article  PubMed  Google Scholar 

  • Taylor F, Kurantz MJ, Goldberg N, McAloon AJ, Craig JC (2000) Dry-grind process for fuel ethanol by continuous fermentation and stripping. Biotechnol Prog 16:541–547

    Article  CAS  PubMed  Google Scholar 

  • Thomas KC, Dawson PSS (1978) Relationship between iron-limited growth and energy limitation during phased cultivation of Candida utilis. Can J Microbiol 24:440–447

    Article  CAS  PubMed  Google Scholar 

  • Tin CSF, Mawson AJ (1993) Ethanol production from whey in a membrane recycle bioreactor. Process Biochem 28:217–221

    Article  CAS  Google Scholar 

  • Ulrich JT, Mathre DE (1972) Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae. J Bacteriol 110:628–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urit T, Löser C, Wunderlich M, Bley T (2011) Formation of ethyl acetate by Kluyveromyces marxianus on whey: studies of the ester stripping. Bioprocess Biosyst Eng 34:547–559

    Article  CAS  PubMed  Google Scholar 

  • Urit T, Löser C, Stukert A, Bley T (2012) Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch cultivation at specific trace-element limitation. Appl Microbiol Biotechnol 96:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Urit T, Manthey R, Bley T, Löser C (2013a) Formation of ethyl acetate by Kluyveromyces marxianus on whey: influence of aeration and inhibition of yeast growth by ethyl acetate. Eng Life Sci 13:247–260

    Article  CAS  Google Scholar 

  • Urit T, Li M, Bley T, Löser C (2013b) Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Appl Microbiol Biotechnol 97:10359–10371

    Article  CAS  PubMed  Google Scholar 

  • van den Broek JA, de Bruijne AW, van Steveninck J (1987) The role of ATP in the control of H+-galactoside symport in the yeast Kluyveromyces marxianus. Biochem J 242:729–734

  • Veiga A, Arrabaça JD, Loureiro-Dias MC (2000) Cyanide-resistant respiration is frequent, but confined to yeasts incapable of aerobic fermentation. FEMS Microbiol Lett 190:93–97

    Article  CAS  PubMed  Google Scholar 

  • Veiga A, Arrabaça JD, Sansonetty F, Ludovico P, Côrte-Real M, Loureiro-Dias MC (2003) Energy conversion coupled to cyanide-resistant respiration in the yeasts Pichia membranifaciens and Debaryomyces hansenii. FEMS Yeast Res 3:141–148

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vercammen J, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2004) The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 21:367–377

    Article  CAS  PubMed  Google Scholar 

  • Vienne P, von Stockar U (1985a) Metabolic, physiological and kinetic aspects of the alcoholic fermentation of whey permeate by Kluyveromyces fragilis NRRL 665 and Kluyveromyces lactis NCYC 571. Enzym Microb Technol 7:287–294

    Article  CAS  Google Scholar 

  • Vienne P, von Stockar U (1985b) An investigation of ethanol inhibition and other limitations occurring during the fermentation of concentrated whey permeate by Kluyveromyces fragilis. Biotechnol Lett 7:521–526

    Article  CAS  Google Scholar 

  • Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388

    Article  CAS  PubMed  Google Scholar 

  • Westall S (1998) Characterisation of yeast species by their production of volatile metabolites. J Food Mycol 1:187–201

    CAS  Google Scholar 

  • Willetts A (1989) Ester formation from ethanol by Candida pseudotropicalis. Antonie Van Leeuwenhoek 56:175–180

    Article  CAS  PubMed  Google Scholar 

  • Yong FM, Lee KH, Wong HA (1981) The production of ethyl acetate by soy yeast Saccharomyces rouxii NRRL Y-1096. J Food Technol 16:177–184

    Article  CAS  Google Scholar 

  • Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanet Urit would like to express his thanks to the Rajabhat Nakhon Sawan University (Muang Nakhon Sawan, Thailand) for financial support. We are grateful to Mrs. E. Kneschke for technical assistance, to M. Heller from the Sachsenmilch Leppersdorf GmbH (Germany) for providing whey permeate, and to A. Stößer and A. Stukert for performing some of the presented experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Löser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löser, C., Urit, T., Keil, P. et al. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Appl Microbiol Biotechnol 99, 1131–1144 (2015). https://doi.org/10.1007/s00253-014-6098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6098-4

Keywords

Navigation