Skip to main content
Log in

Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 °C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 °C, was observed, which was 10 °C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basu S, Saha M, Chattopadhyay D, Chakrabarti K (2009) Large-scale degumming of ramie fibre using a newly isolated Bacillus pumilus DKS1 with high pectate lyase activity. J Ind Microbiol Biotechnol 36:239–245

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Roy A, Ghosh A, Bera A, Chattopadhyay D, Chakrabarti K (2011) Arg235 is an essential catalytic residue of Bacillus pumilus DKS1 pectate lyase to degum ramie fibre. Biodegradation 22:153–161

    Article  CAS  PubMed  Google Scholar 

  • Berensmeier S, Singh SA, Meens J, Buchholz K (2004) Cloning of the pelA gene from Bacillus licheniformis 14A and biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase. Appl Microbiol Biotechnol 64:560–567

    Article  CAS  PubMed  Google Scholar 

  • Boland WE, Henriksen ED, Doran-Peterson J (2010) Characterization of two Paenibacillus amylolyticus strain 27C64 pectate lyases with activity on highly methylated pectin. Appl Environ Microbiol 76:6006–6009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    Article  PubMed  Google Scholar 

  • Hatada Y, Kobayashi T, Ito S (2001) Enzymatic properties of the highly thermophilic and alkaline pectate lyase Pel-4B from alkaliphilic Bacillus sp. strain P-4-N and the entire nucleotide and amino acid sequences. Extremophiles 5:127–133

    Article  CAS  PubMed  Google Scholar 

  • Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem 36:803–807

    Article  CAS  Google Scholar 

  • Klug-Santner BG, Schnitzhofer W, Vršanská M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM (2006) Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J Biotechnol 121:390–401

    Article  CAS  PubMed  Google Scholar 

  • Kluskens L, van Alebeek G, Voragen A, de Vos W, van der Oost J (2003) Molecular and biochemical characterization of the thermoactive family 1 pectate lyase from the hyperthermophilic bacterium Thermotoga maritima. Biochem J 1:651–659

    Article  Google Scholar 

  • Li X, Wang H, Zhou C, Ma Y, Li J, Song J (2014) Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli. BMC Biotechnol 14:18–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang C, Fioroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miyazaki K (2011) Chapter seventeen—MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. In: Christopher V (ed) Methods in enzymology. Academic, New York, pp 399–406

    Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Godzik A (2005) Structural genomics of Thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability. Structure 13:857–860

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J, Vandamme EJ (1993) Pectin, pectinase, and protopectinase: production, properties, and applications. Adv Appl Microbiol 39:213–294

    Article  CAS  PubMed  Google Scholar 

  • Silva I, Larsen D, Jers C, Derkx P, Meyer A, Mikkelsen J (2013) Enhancing RGI lyase thermostability by targeted single point mutations. Appl Microbiol Biotechnol 97:9727–9735

    Article  CAS  PubMed  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    Article  CAS  PubMed  Google Scholar 

  • Stutzenberger FJ (1987) Inducible thermoalkalophilic polygalacturonate lyase from Thermomonospora fusca. J Bacteriol 169:2774–2780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sukhumsiirchart W, Kawanishi S, Deesukon W, Chansiri K, Kawasaki H, Sakamoto T (2009) Purification, characterization, and overexpression of thermophilic pectate lyase of Bacillus sp. RN1 isolated from a hot spring in Thailand. Biosci Biotechnol Biochem 73:268–273

    Article  CAS  PubMed  Google Scholar 

  • Takao M, Nakaniwa T, Yoshikawa K, Terashita T, Sakai T (2001) Molecular cloning, DNA Sequence, and expression of the gene encoding for thermostable pectate lyase of thermophilic Bacillus sp. TS 47. Biosci Biotechnol Biochem 65:322–329

    Article  CAS  PubMed  Google Scholar 

  • Tang S-Y, Le Q-T, Shim J-H, Yang S-J, Auh J-H, Park C, Park K-H (2006) Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J 273:3335–3345

    Article  CAS  PubMed  Google Scholar 

  • Tardy F, Nasser W, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1997) Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol 179:2503–2511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Malcolm BA (2001) Two-stage polymerase chain reaction protocol allowing introduction of multiple mutations, deletions, and insertions, using QuikChange™ site-directed mutagenesis. In: Braman J (ed) In vitro mutagenesis protocols, 2nd edn. Humana Press, Totowa, pp 37–43

    Google Scholar 

  • Wang H, Li X, Ma Y, Song J (2014) Characterization and high-level expression of a metagenome-derived alkaline pectate lyase in recombinant Escherichia coli. Process Biochem 49:69–76

    Article  CAS  Google Scholar 

  • Wilson K (2001) Preparation of genomic DNA from bacteria. In: Ausubel F (ed) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

    Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta Protein Struct Mol Enzymol 1549:1–8

    Article  CAS  Google Scholar 

  • Xiao Z, Bergeron H, Grosse S, Beauchemin M, Garron M-L, Shaya D, Sulea T, Cygler M, Lau PCK (2008) Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Appl Environ Microbiol 74:1183–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Yao J, Zhou C, Mao L, Zhang G, Ma Y (2013) The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber. BMC Biotechnol 13:9–17

    Article  CAS  Google Scholar 

  • Zheng Y, Huang C-H, Liu W, Ko T-P, Xue Y, Zhou C, Guo R-T, Ma Y (2012) Crystal structure and substrate-binding mode of a novel pectate lyase from alkaliphilic Bacillus sp. N16-5. Biochem Biophys Res Commun 420:269–274

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Li X, Shi W, Guo F, Zhao J, Qu Y (2013a) Improved production of alkaline polygalacturonate lyase by homologous overexpression PelA in Bacillus subtilis. Process Biochem 48:1143–1150

    Article  CAS  Google Scholar 

  • Zou M, Li X, Zhao J, Qu Y (2013b) Characteristics of polygalacturonate lyase C from Bacillus subtilis 7-3-3 and its synergistic action with PelA in enzymatic degumming. PLoS One 8:79357–79366

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research Program of the Chinese Academy of Sciences Grant KSZD-EW-Z-015-2, Ministry of Science and Technology of China Grant 2013CB734003, National Natural Science Foundation of China Grant 21172095, and Grant SKLMR-20120603 supported by the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences. We would also like to thank Mr. Ye Mao for his assistance in manuscript preparations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhe Ma or Shuang-Yan Tang.

Additional information

Chaoning Liang and Xiwu Gui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Gui, X., Zhou, C. et al. Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Appl Microbiol Biotechnol 99, 2673–2682 (2015). https://doi.org/10.1007/s00253-014-6091-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6091-y

Keywords

Navigation