Skip to main content

Advertisement

Log in

Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Understanding of the effects of perturbation strategies on soil microorganisms is helpful in optimizing bioremediation systems and enhancing their efficiency. Four soil mesocosms were constructed for bioremediation of highly polycyclic aromatic hydrocarbon-contaminated soil using the flowering plant Orychophragmus violaceus and/or bacterium Rhodococcus ruber Em1. Bacterial community dynamics were evaluated by 454 pyrosequencing, and Em1 abundance was assessed by quantitative polymerase chain reaction. The results showed that the diversity of the bacterial community increased gradually with time; the degree of increase was in the order mesocosm PE (combination of O. violaceus and Em1), mesocosm WE (Em1), mesocosm PC (O. violaceus only), mesocosm WA (attenuation). Increased diversity may be predictive of PAH degradation. O. violaceus had a marked effect on bacterial community evolution and promoted the growth of Em1. The bacterial community of mesocosm PE gradually separated from the others, as indicated by Venn diagrams and weight-principal component analysis. Abundances of the families Cytophagaceae + Nocardioidaceae + Iamiacaeae (Actinobacteria), and Alcanivoracaceae + Pseodomonadaceae + Xanthomonadaceae (Gammaproteobacteria) were positively correlated with PAH degradation. Our findings help bridge the gap between field bioremediation and laboratory approaches, provide insight into processes of microbial ecological recovery, and will be useful in developing strategies to optimize bioremediation by modifying plant-microbe interaction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76(2):287–308. doi:10.1007/s00253-007-1018-5

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sun Q, Sun R, Wen D, Tang X (2011) Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters. Environ Sci Technol 45:1940–1948. doi:10.1021/es103150v

    Article  CAS  PubMed  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160. doi:10.1038/nature03891

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013a) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210. doi:10.1038/ismej.2013.1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell TH, Yergeau E, Juck D, Whyte LG, Greer CW (2013b) Alteration of microbial community structure affects diesel biodegradation in an Arctic soil. FEMS Microbiol Ecol 85:51–61. doi:10.1111/1574-6941.12102

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117. doi:10.1016/S0960-8524(00)00093-6

    Article  CAS  PubMed  Google Scholar 

  • CCME (2004) Canadian soil quality guidelines for the protection of environmental and human health: Summary Tables. CCME, Winnipeg

    Google Scholar 

  • Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736. doi:10.1111/j.1462-2920.2010.02376.x

    Article  PubMed  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. Appl Environ Microbiol 93:915–929

    Article  CAS  Google Scholar 

  • Considine T, Robbat J, Albert C (2008) On-site profiling and speciation of polycyclic aromatic hydrocarbons at manufactured gas plant sites by a high temperature transfer line, membrane inlet probe coupled to a photoionization detector and gas chromatograph/mass spectrometer. Environ Sci Technol 42:1213–1220. doi:10.1021/es702252q

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Ramos SM, Álvarez-Bernal D, Dendooven L (2008) Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biol Biochem 40:1954–1959. doi:10.1016/j.soilbio.2008.04.009

    Article  CAS  Google Scholar 

  • Didier T, Philippe L-G, Sonia H, Amar B, Claudia M-C, Marielle DI, Jairo F (2012) Prospects of Miscanthus giganteus for PAH phytoremediation: a microcosm study. Ind Crops Prod 36:276–281. doi:10.1016/j.indcrop.2011.10.030

    Article  Google Scholar 

  • Fournier JC (1993) Effect of microbial competition on the survival and activity of 2,4-D-degrading Alcaligenes xylosoxidans subsp. denitrificans added to soil. Let Appl Microbiol 16:178–181. doi:10.1111/j.1472-765X.1993.tb01389.x

  • Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecol 93:1550–1559. doi:10.1890/10-2135.1

    Article  Google Scholar 

  • Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele J-P (1999) Analytical characterization of contaminated soils from former manufactured gas plants. Environ Sci Technol 33:825–830. doi:10.1890/10-2135.1

    Article  CAS  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36:4795–4803. doi:10.1021/es020626k

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema JD (2010) Ongoing coevolution in mycorrhizal interactions. New Phytol 187:286–300. doi:10.1111/j.1469-8137.2010.03305.x

    Article  PubMed  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075. doi:10.1128/AEM.02928-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horner-Devine MC, Carney KM, Bohannan BJ (2004) An ecological perspective on bacterial biodiversity. Proc Royal Society of London. Series B: Biol Sci 271(1535):113–122. doi:10.1098/rspb.2003.2549

    Google Scholar 

  • Huang L, Li X-W, Tan Z-L, Liu S-J, Liu Z-P (2007) Function ananlysis of the effective strain Rhodococcus ruber Em1 in wastewater treatment system by quantitative competotive PCR. Acta Microbiol Sin 47:307–312 (in Chinese)

    CAS  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143. doi:10.1186/gb-2007-8-7-r143

    Article  PubMed Central  PubMed  Google Scholar 

  • Ibarrolaza A, Coppotelli B, Del Panno M, Donati E, Morelli I (2011) Application of the knowledge-based approach to strain selection for a bioaugmentation process of phenanthrene- and Cr(VI)-contaminated soil. J Appl Microbiol 111:26–35. doi:10.1111/j.1365-2672.2011.05036.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. PNAS 107:2093–2098. doi:10.1073/pnas.0906710107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12:1132–1143. doi:10.1111/j.1462-2920.2010.02154.x

    Article  CAS  PubMed  Google Scholar 

  • Li X-W, Liu S-J, Liu Z-P (2003) A novel bioemuslifier-producing bacterium and the conditions for its biosynthesis of emulsifier. Microbiol 39:298–301 (in Chinese)

    Google Scholar 

  • Li X-W, Liu S-J, Liu Z-P (2004) Character of a new bioemulsifier and its influence on biodegradation of polycyclic aromatic hydrocarbons (PAHs). Acta Microbiol Sin 44:373–378 (in Chinese)

    CAS  Google Scholar 

  • Li X, Wu Y, Lin X, Zhang J, Zeng J (2012) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem 47:191–197. doi:10.1016/j.soilbio.2012.01.001

    Article  CAS  Google Scholar 

  • Liang Y, Van Nostrand JD, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J (2010) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5:403–413. doi:10.1038/ismej.2010.142

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu L, Jiang C-Y, Liu X-Y, Wu J-F, Han J-G, Liu S-J (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473. doi:10.1111/j.1462-2920.2006.01163.x

  • Liu F, Xu Y, Liu J, Liu D, Li J, Zhang G, Li X, Zou S, Lai S (2013) Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) to a coastal site of Hong Kong, South China. Atmos Environ 69:265–272. doi:10.1016/j.atmosenv.2012.12.024

    Article  CAS  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28:266–276. doi:10.1021/es00055a002

    Article  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375. doi:10.1016/j.micres.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Niepceron M, Martin-Laurent F, Crampon M, Portet-Koltalo F, Akpa-Vinceslas M, Legras M, Bru D, Bureau F, Bodilis J (2013) Gammaproteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environ Pollut 180:199–205. doi:10.1016/j.envpol.2013.05.040

    Article  CAS  PubMed  Google Scholar 

  • Nopcharoenkul W, Pinphanichakarn P, Pinyakong O (2011) The development of a liquid formulation of Pseudoxanthomonas sp. RN402 and its application in the treatment of pyrene-contaminated soil. J Appl Microbiol 111:36–47. doi:10.1111/j.1365-2672.2011.05037.x

    Article  CAS  PubMed  Google Scholar 

  • Salles JF, Poly F, Schmid B, Roux XL (2009) Community niche predicts the functioning of denitrifying bacterial assemblages. Ecol 90:3324–3332. doi:10.1890/09-0188.1

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semrany S, Favier L, Djelal H, Taha S, Amrane A (2012) Bioaugmentation: possible solution in the treatment of bio-refractory organic compounds (Bio-ROCs). Biochem Eng J 69:75–86. doi:10.1016/j.bej.2012.08.017

    Article  CAS  Google Scholar 

  • Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745. doi:10.1111/j.1462-2920.2006.01112.x

    Article  CAS  PubMed  Google Scholar 

  • Sipilä TP, Keskinen A-K, Åkerman M-L, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of IE 3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981. doi:10.1038/ismej.2008.50

    Article  PubMed  Google Scholar 

  • Smith E, Smith J, Naidu R, Juhasz AL (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151:71–86. doi:10.1023/B:WATE.0000009899.03630.78

    Article  CAS  Google Scholar 

  • Stroo HF, Jensen R, Loehr RC, Nakles DV, Fairbrother A, Liban CB (2000) Environmentally acceptable endpoints for PAHs at a manufactured gas plant site. Environ Sci Technol 34:3831–3836. doi:10.1021/es990623g

    Article  CAS  Google Scholar 

  • Sun G-D, Xu Y, Jin J-H, Zhong Z-P, Liu Y, Luo M, Liu Z-P (2012) Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. J Hazard Mater 233–234:72–78. doi:10.1016/j.jhazmat.2012.06.060

    Article  PubMed  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614. doi:10.1128/AEM.66.11.4605-4614.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tejeda-Agredano M, Gallego S, Vila J, Grifoll M, Ortega-Calvo J, Cantos M (2013) Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biol Biochem 57:830–840. doi:10.1016/j.soilbio.2012.08.008

    Article  CAS  Google Scholar 

  • Törneman N, Yang X, Bååth E, Bengtsson G (2008) Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Environ Toxicol Chem 27:1039–1046. doi:10.1897/07-440.1

    Article  PubMed  Google Scholar 

  • US EPA (2000) A resource for MGP site characterization and remediation. EPA/542-R-00-005, Washington, DC

    Google Scholar 

  • Xia Z, Duan X, Tao S, Qiu W, Liu D, Wang Y, Wei S, Wang B, Jiang Q, Lu B (2013) Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ Pollut 173:150–156. doi:10.1016/j.envpol.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Guo J-Y, Liu G-R, Shi G-L, Guo C-S, Zhang Y, Feng Y-C (2014) Historical trends of concentrations, source contributions and toxicities for PAHs in dated sediment cores from five lakes in western China. Sci Total Environ 470:519–526. doi:10.1016/j.scitotenv.2013.10.022

    Article  PubMed  Google Scholar 

  • Yrjälä K, Keskinen A-K, Åkerman M-L, Fortelius C, Sipilä TP (2010) The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environ Pollut 158:1680–1688. doi:10.1016/j.envpol.2009.11.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-YW-L08) and a program of the Beijing Academy of Science and Technology (No. IE012009610019-1). The authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Pei Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GD., Xu, Y., Liu, Y. et al. Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Appl Microbiol Biotechnol 98, 10243–10253 (2014). https://doi.org/10.1007/s00253-014-5971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5971-5

Keywords

Navigation