Skip to main content
Log in

Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (γ-PGA) is an important biopolymer with greatly potential in industrial and medical applications. In the present study, we constructed a metabolically engineered glutamate-independent Bacillus amyloliquefaciens LL3 strain with considerable γ-PGA production, which was carried out by single, double, and triple markerless deletions of three degradation genes pgdS, ggt, and cwlO. The highest γ-PGA production (7.12 g/L) was obtained from the pgdS and cwlO double-deletion strain NK-pc, which was 93 % higher than that of wild-type LL3 strain (3.69 g/L). The triple-gene-deletion strain NK-pgc showed a 28 % decrease in γ-PGA production, leading to a yield of 2.69 g/L. Furthermore, the cell morphologies of the mutant strains were also characterized. The cell length of cwlO deletion strains NK-c and NK-pc was shorter than that of the wild-type strain, while the ggt deletion strains NK-g, NK-pg, NK-gc, and NK-pgc showed longer cell lengths. This is the first report concerning the markerless deletion of γ-PGA degradation genes to improve γ-PGA production in a glutamate-independent strain and the first observation that γ-glutamyltranspeptidase (encoded by ggt) could be involved in the inhibition of cell elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Ito Y, Ohmachi T, Asada Y (1997) Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci Biotechnol Biochem 61:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Abe S, Yasumura A, Tanaka T (2009) Regulation of Bacillus subtilis aprE expression by glnA through inhibition of scoC and σD-dependent degR expression. J Bacteriol 191:3050–3058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Nakamura H, Yamamoto T, Kamei T, Soda K, Park C, Sung MH, Yagi T, Misono H (2003) Poly-γ-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J Mol Catal B Enzym 23:249–255

    Article  CAS  Google Scholar 

  • Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180–200

    Article  CAS  PubMed  Google Scholar 

  • Cao MF, Song CJ, Jin YH, Liu L, Liu J, Xie H, Guo WB, Wang SF (2010) Synthesis of poly(γ-glutamic acid) and heterologous expression of pgsBCA genes. J Mol Catal B Enzym 67:111–116

    Article  CAS  Google Scholar 

  • Cao MF, Geng WT, Liu L, Song CJ, Xie H, Guo WB, Jin YH, Wang SF (2011) Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 102:4251–4257

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J (2013) Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 89:1084–1098

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng J, Gu YY, Wang JQ, Song CJ, Yang C, Xie H, Zhang W, Wang SF (2013) Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl Biochem Biotechnol 171:532–542

    Article  CAS  PubMed  Google Scholar 

  • Geng WT, Cao MF, Song CJ, Xie H, Liu L, Yang C, Feng J, Zhang W, Jin YH, Du Y, Wang SF (2011) Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J Bacteriol 193:3393–3394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto A, Kunioka M (1992) Biosynthesis and hydrolysis of poly(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem 56:1031–1035

    Article  CAS  Google Scholar 

  • Hashimoto M, Ooiwa S, Sekiguchi J (2012) Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D, L-endopeptidase activity at the lateral cell wall. J Bacteriol 194:796–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller KL, Bender KS, Wall JD (2009) Development of a markerless genetic exchange system for Desulfovibrio vulgaris hildenborough and its use in generating a strain with increased transformation efficiency. Appl Environ Microbiol 75:7682–7691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura K, Tran LS, Uchida I, Itoh Y (2004) Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology 150:4115–4123

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Tran LS, Do TH, Itoh Y (2009) Expression of the pgsB encoding the poly-gamma-DL-glutamate syhthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 73:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ma X, Wang Y, Liu F, Qia JQ, Li XZ, Gao XW, Zhou T (2011) Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-polyglutamic acid (γ-PGA) overproduction. Curr Microbiol 62:235–241

    Article  CAS  PubMed  Google Scholar 

  • Mitsui N, Murasawa H, Sekiguchi J (2011) Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto). J Gen Appl Microbiol 57:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa T, Tsukahara K, Ogura M (2009) Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73:2096–2102

    Article  CAS  PubMed  Google Scholar 

  • Osera C, Amati G, Calvio C, Galizzi A (2009) SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 155:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Reiter L, Kolstø AB, Piehler AP (2011) Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle. J Microbiol Methods 86:210–217

    Article  CAS  PubMed  Google Scholar 

  • Richard A, Margaritis A (2003) Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnol Bioeng 82:299–305

    Article  CAS  PubMed  Google Scholar 

  • Scoffone V, Dondi D, Biino G, Borghese G, Pasini D, Galizzi A, Calvio C (2013) Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis. Biotechnol Bioeng 110:2006–2012

    Article  CAS  PubMed  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  CAS  PubMed  Google Scholar 

  • Smith K, Youngman P (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262

    CAS  PubMed  Google Scholar 

  • Soliman NA, Berekaa MM, Abdel-Fattah YR (2005) Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements. Appl Microbiol Biotechnol 69:259–267

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158

    Article  CAS  PubMed  Google Scholar 

  • Su YS, Li X, Liu QZ, Hou ZW, Zhu XQ, Guo XP, Ling PX (2010) Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 101:4733–4736

    Article  CAS  PubMed  Google Scholar 

  • Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Rec 5:352–366

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tahara Y (2003) Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation. J Bacteriol 185:2379–2382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran LS, Nagai T, Itoh Y (2000) Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 37:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang P (2008) Improvement of poly(γ-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol 79:527–535

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H, Sekiguchi J (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98:174–181

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Jing J, Xu H, Liang JF, Wu Q, Feng XH, Ouyang PK (2009) Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. J Mol Catal B Enzym 56:158–164

    Article  CAS  Google Scholar 

  • Yasumura A, Abe S, Tanaka T (2008) Involvement of nitrogen regulation in Bacillus subtilis degU expression. J Bacteriol 190:5162–5171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh CM, Wang JP, Lo SC, Chan WC, Lin MY (2010) Chromosomal integration of a synthetic expression control sequence achieves poly-γ-glutamate production in a Bacillus subtilis strain. Biotechnol Prog 24:1001–1007

    Google Scholar 

  • Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xie H, He Y, Feng J, Gao WX, Gu YY, Wang SF, Song CJ (2013) Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiol Lett 343:127–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National key Basic Research Program of China (“973”-Program) 2012CB725204, National High Technology Research and Development Program of China (“863”-Program) 2012AA021505, Natural Science Foundation of China Grant Nos. 31070039, 31170030, 31300032, and 51073081, Project of Tianjin, China (13JCZDJC27800, 13JCYBJC24900). The Project of Tianjin, China (13JCQNJC09700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunjiang Song or Shufang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Gao, W., Gu, Y. et al. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl Microbiol Biotechnol 98, 6397–6407 (2014). https://doi.org/10.1007/s00253-014-5729-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5729-0

Keywords

Navigation