Skip to main content
Log in

Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhizobia are soil bacteria that can fix nitrogen in symbiosis with leguminous plants or exist free living in the rhizosphere. Crucial to their complex lifestyle is the ability to sense and respond to diverse environmental stimuli, requiring elaborate signaling pathways. In the majority of bacteria, the nucleotide-based second messenger cyclic diguanosine monophosphate (c-di-GMP) is involved in signal transduction. Surprisingly, little is known about the importance of c-di-GMP signaling in rhizobia. We have analyzed the genome sequences of six well-studied type species (Bradyrhizobium japonicum, Mesorhizobium loti, Rhizobium etli, Rhizobium leguminosarum, Sinorhizobium fredii, and Sinorhizobium meliloti) for proteins possibly involved in c-di-GMP signaling based on the presence of four domains: GGDEF (diguanylate cyclase), EAL and HD-GYP (phosphodiesterase), and PilZ (c-di-GMP sensor). We find that rhizobia possess a high number of these proteins. Conservation analysis suggests that c-di-GMP signaling proteins modulate species-specific pathways rather than ancient rhizobia-specific processes. Two hybrid GGDEF-EAL proteins were selected for functional analysis, R. etli RHE_PD00105 (CdgA) and RHE_PD00137 (CdgB). Expression of cdgA and cdgB is repressed by the alarmone (p)ppGpp. cdgB is significantly expressed on plant roots and free living. Mutation of cdgA, cdgB, or both does not affect plant root colonization, nitrogen fixation capacity, biofilm formation, motility, and exopolysaccharide production. However, heterologous expression of the individual GGDEF and EAL domains of each protein in Escherichia coli strongly suggests that CdgA and CdgB are bifunctional proteins, possessing both diguanylate cyclase and phosphodiesterase activities. Taken together, our results provide a platform for future studies of c-di-GMP signaling in rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub Michael T, Baker Tania A, Jenal U (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43:550–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ausmees N, Jonsson H, Hoglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145(Pt 5):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, Keck W, Ackermann M, Schirmer T, Jenal U (2009) Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 72:1500–1516

    Article  CAS  PubMed  Google Scholar 

  • Bonomi HR, Posadas DM, Paris G, Carrica Mdel C, Frederickson M, Pietrasanta LI, Bogomolni RA, Zorreguieta A, Goldbaum FA (2012) Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proc Natl Acad Sci U S A 109:12135–12140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bordeleau E, Fortier LC, Malouin F, Burrus V (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7:e1002039

    Google Scholar 

  • Bourret RB (2010) Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13:142–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braeken K, Daniels R, Vos K, Fauvart M, Bachaspatimayum D, Vanderleyden J, Michiels J (2008a) Genetic determinants of swarming in Rhizobium etli. Microb Ecol 55:54–64

    Article  PubMed  Google Scholar 

  • Braeken K, Fauvart M, Vercruysse M, Beullens S, Lambrichts I, Michiels J (2008b) Pleiotropic effects of a rel mutation on stress survival of Rhizobium etli CNPAF512. BMC Microbiol 8:219

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–U111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christen B, Christen M, Paul R, Schmid F, Folcher M, Jenoe P, Meuwly M, Jenal U (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32015–32024

    Article  CAS  PubMed  Google Scholar 

  • Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–30837

    Article  CAS  PubMed  Google Scholar 

  • D'Hooghe I, Vander Wauven C, Michiels J, Tricot C, de Wilde P, Vanderleyden J, Stalon V (1997) The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J Bacteriol 179:7403–7409

    PubMed Central  PubMed  Google Scholar 

  • Da Re S, Ghigo JM (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188:3073–3087

    Article  PubMed Central  PubMed  Google Scholar 

  • Derbyshire MK, Lanczycki CJ, Bryant SH, Marchler-Bauer A (2012) Annotation of functional sites with the Conserved Domain Database. Database (Oxford) 2012:DOI: 10.1093/database/bar1058

  • Dombrecht B, Tesfay MZ, Verreth C, Heusdens C, Napoles MC, Vanderleyden J, Michiels J (2002) The Rhizobium etli gene iscN is highly expressed in bacteroids and required for nitrogen fixation. Mol Genet Genomics 267:820–828

    Article  CAS  PubMed  Google Scholar 

  • Dombrecht B, Vanderleyden J, Michiels J (2001) Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in gram-negative bacteria. Mol Plant Microbe Interact 14:426–430

    Article  CAS  PubMed  Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9

    Article  CAS  PubMed  Google Scholar 

  • Fauvart M, Sánchez-Rodríguez A, Beullens S, Marchal K, Michiels J (2011) Genome sequence of Rhizobium etli CNPAF512, a nitrogen-fixing symbiont isolated from bean root nodules in Brazil. J Bacteriol 193:3158–3159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fauvart M, Verstraeten N, Dombrecht B, Venmans R, Beullens S, Heusdens C, Michiels J (2009) Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 155:3045–3054

    Article  CAS  PubMed  Google Scholar 

  • Fellay R, Frey J, Krisch H (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 52:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190:851–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 205:17–23

    Article  CAS  PubMed  Google Scholar 

  • Gibson KE, Barnett MJ, Toman CJ, Long SR, Walker GC (2007) The symbiosis regulator CbrA modulates a complex regulatory network affecting the flagellar apparatus and cell envelope proteins. J Bacteriol 189:3591–3602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta K, Kumar P, Chatterji D (2010) Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis. PLoS One 5:e15072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henry JT, Crosson S (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol 65:261–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hom SSM, Uratsu SL, Hoang F (1984) Transposon Tn5-induced mutagenesis of Rhizobium japonicum yielding a wide variety of mutants. J Bacteriol 159:335–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssens JC, Steenackers H, Robijns S, Gellens E, Levin J, Zhao H, Hermans K, De Coster D, Verhoeven TL, Marchal K, Vanderleyden J, De Vos DE, De Keersmaecker SC (2008) Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 74:6639–6648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42:305–341

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014

  • Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844

    Article  PubMed  Google Scholar 

  • Kumar M, Chatterji D (2008) Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology 154:2942–2955

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Gu F, Ching SM, Lam Y, Chua KL (2010) CdpA is a Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity. Infect Immun 78:1832–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A (2011) The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3'-5')-cyclic dimeric GMP synthesis. J Biol Chem 286:31136–31144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marino D, Pucciariello C, Puppo A, Frendo P (2009) The redox state, a referee of the legume-rhizobia symbiotic game. Adv Bot Res 52:115–151

    Article  CAS  Google Scholar 

  • Martinez SE, Beavo JA, Hol WG (2002) GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. Mol Interv 2:317–323

    Article  CAS  PubMed  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michiels J, Van Soom T, D'Hooghe I, Dombrecht B, Benhassine T, de Wilde P, Vanderleyden J (1998) The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 180:1729–1740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J (2005) Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 187:5460–5469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mougel C, Zhulin IB (2001) CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem Sci 26:582–584

    Article  CAS  PubMed  Google Scholar 

  • Navarro Llorens JM, Tormo A, Martinez-Garcia E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495

    Article  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Österberg S, Åberg A, Herrera Seitz MK, Wolf-Watz M, Shingler V (2013) Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putida. Environ Microbiol. doi:10.1111/1758-2229.12045

  • Pesavento C, Hengge R (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12:170–176

    Article  CAS  PubMed  Google Scholar 

  • Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46:449–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 72:4329–4337

    Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–3316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  • Rao F, Yang Y, Qi Y, Liang ZX (2008) Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190:3622–3631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  • Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7:724–735

    Article  CAS  PubMed  Google Scholar 

  • Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seshasayee AS, Fraser GM, Luscombe NM (2010) Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucleic Acids Res 38:5970–5981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimoda Y, Mitsui H, Kamimatsuse H, Minamisawa K, Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M, Shinpo S, Watanabe A, Kohara M, Yamada M, Nakamura Y, Tabata S, Sato S (2008) Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res 15:297–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Spangler C, Bohm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Meth 81:226–231

    Article  CAS  Google Scholar 

  • Steklov MY, Lomin SN, Osolodkin DI, Romanov GA (2013) Structural basis for cytokinin receptor signaling: an evolutionary approach. Plant Cell Rep 32:781–793

    Article  CAS  PubMed  Google Scholar 

  • Tarutina M, Ryjenkov DA, Gomelsky M (2006) An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 281:34751–34758

    Article  CAS  PubMed  Google Scholar 

  • Taylor BL (2007) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65:1415–1424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • van Rhijn P, Desair J, Vlassak K, Vanderleyden J (1994) Functional analysis of nodD genes of Rhizobium tropici CIAT899. Mol Plant Microbe Interact 7:666–676

    Article  Google Scholar 

  • Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J (2011) Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496–506

    Article  CAS  PubMed  Google Scholar 

  • Vos K, Braeken K, Fauvart M, Ndayizeye M, Verhaert J, Zachurzok S, Lambrichts I, Michiels J (2007) The Rhizobium etli opt operon is required for symbiosis and stress resistance. Environ Microbiol 9:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Walker JM (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8

    CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034

    Article  CAS  PubMed  Google Scholar 

  • Xi C, Dirix G, Hofkens J, Schryver FC, Vanderleyden J, Michiels J (2001) Use of dual marker transposons to identify new symbiosis genes in Rhizobium. Microb Ecol 41:325–332

    Google Scholar 

  • Xi C, Schoeters E, Vanderleyden J, Michiels J (2000) Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-related protein. Proc Natl Acad Sci U S A 97:11114–11119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Q, Tian Y, Kabaleeswaran V, Jiang XM, Tu DQ, Eck MJ, Chen ZJJ, Wu H (2012) Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol Cell 46:735–745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office and was supported by grants from the Research Council of the KU Leuven (GOA/011/2008) and from the Fund for Scientific Research-Flanders (G.0412.10). S.B.R. received a fellowship from the Fund for Scientific Research-Flanders. We gratefully acknowledge the help of Claudine Vereecke, Public Collection Curator of the BCCM/LMG Bacteria Collection, Ghent, Belgium, for her part in the smooth deposition of R. etli CNPAF512 and Annette Garbe, Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany, for performing c-di-GMP quantifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels.

Additional information

Maarten Fauvart and Jan Michiels contributed equally as senior authors.

Supplementary electronic material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4,481 kb)

Supplementary material table S3

(XLS 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Romdhane, S.B., Beullens, S. et al. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli . Appl Microbiol Biotechnol 98, 4589–4602 (2014). https://doi.org/10.1007/s00253-014-5722-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5722-7

Keywords

Navigation