Skip to main content
Log in

Genetic Determinants of Swarming in Rhizobium etli

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Swarming motility is considered to be a social phenomenon that enables groups of bacteria to move coordinately atop solid surfaces. The differentiated swarmer cell population is embedded in an extracellular slime layer, and the phenomenon has previously been linked with biofilm formation and virulence. The gram-negative nitrogen-fixing soil bacterium Rhizobium etli CNPAF512 was previously shown to display swarming behavior on soft agar plates. In a search for novel genetic determinants of swarming, a detailed analysis of the swarming behavior of 700 miniTn5 mutants of R. etli was performed. Twenty-four mutants defective in swarming or displaying abnormal swarming patterns were identified and could be divided into three groups based on their swarming pattern. Fourteen mutants were completely swarming deficient, five mutants showed an atypical swarming pattern with no completely smooth edge and local extrusions, and five mutants displayed an intermediate swarming phenotype. Sequence analysis of the targeted genes indicated that the mutants were likely affected in quorum-sensing, polysaccharide composition or export, motility, and amino acid and polyamines metabolism. Several of the identified mutants displayed a reduced symbiotic nitrogen fixation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Allison, C, Lai, HC, Gygi, D, Hughes, C (1993) Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol 8: 53–60

    Article  PubMed  CAS  Google Scholar 

  2. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  3. Atkinson, S, Chang, CY, Sockett, RE, Camara, M, Williams, P (2006) Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188: 1451–1461

    Article  PubMed  CAS  Google Scholar 

  4. Belas, R, Goldman, M, Ashliman, K (1995) Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177: 823–828

    PubMed  CAS  Google Scholar 

  5. Berg, HC (2005) Swarming motility: it better be wet. Curr Biol 15: R599–R600

    Article  PubMed  CAS  Google Scholar 

  6. Boles, BR, Thoendel, M, Singh, PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57: 1210–1223

    Article  PubMed  CAS  Google Scholar 

  7. Burkart, M, Toguchi, A, Harshey, RM (1998) The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci USA 95: 2568–2573

    Article  PubMed  CAS  Google Scholar 

  8. Connelly, MB, Young, GM, Sloma, A (2004) Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186: 4159–4167

    Article  PubMed  CAS  Google Scholar 

  9. Daniels, R, Reynaert, S, Hoekstra, H, Verreth, C, Janssens, J, Braeken, K, Fauvart, M, Beullens, S, Heusdens, C, Lambrichts, I, De Vos, DE, Vanderleyden, J, Vermant, J, Michiels, J (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci USA 103:14965–14970

    Article  PubMed  CAS  Google Scholar 

  10. Daniels, R, Vanderleyden, J, Michiels, J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28: 261–289

    Article  PubMed  CAS  Google Scholar 

  11. Daniels, R, De Vos, DE, Desair, J, Raedschelders, G, Luyten, E, Rosemeyer, V, Verreth, C, Schoeters, E, Vanderleyden, J, Michiels, J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277: 462–468

    Article  PubMed  CAS  Google Scholar 

  12. D’hooghe, I, Michiels, J, Vlassak, K, Verreth, C, Waelkens, F, Vanderleyden, J (1995) Structural and functional analysis of the fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512. Mol Gen Genet 249: 117–126

    Article  PubMed  CAS  Google Scholar 

  13. Dombrecht, B, Heusdens, C, Beullens, S, Verreth, C, Mulkers, E, Proost, P, Vanderleyden, J, Michiels, J (2005) Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 55: 1207–1221

    Article  PubMed  CAS  Google Scholar 

  14. Eberl, L, Molin, S, Givskov, M (1999) Surface motility of Serratia liquefaciens MG1. J Bacteriol 181: 1703–1712

    PubMed  CAS  Google Scholar 

  15. Figurski, DH, Helinski, DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648–1652

    Article  PubMed  CAS  Google Scholar 

  16. Finnie, C, Zorreguieta, A, Hartley, NM, Downie, JA (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J Bacteriol 180: 1691–1699

    PubMed  CAS  Google Scholar 

  17. Finnie, C, Hartley, NM, Findlay, KC, Downie, JA (1997) The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol Microbiol 25: 135–146

    Article  PubMed  CAS  Google Scholar 

  18. Fraser, GM, Hughes, C (1999) Swarming motility. Curr Opin Microbiol 2: 630–635

    Article  PubMed  CAS  Google Scholar 

  19. Fujihara, S, Harada, Y (1989) Fast-growing root nodule bacteria produce a novel polyamine, aminobutylhomospermidine. Biochem Biophys Res Commun 165: 659–666

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez, V, Santamaria, RI, Bustos, P, Hernandez-Gonzalez, I, Medrano-Soto, A, Moreno-Hagelsieb, G, Janga, SC, Ramirez, MA, Jimenez-Jacinto, V, Collado-Vides, J, Davila, G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103: 3834–3839

    Article  PubMed  Google Scholar 

  21. Gygi, D, Rahman, MM, Lai, HC, Carlson, R, Guard-Petter, J, Hughes, C (1995) A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17: 1167–1175

    Article  PubMed  CAS  Google Scholar 

  22. Harshey, RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57: 249–273

    Article  PubMed  CAS  Google Scholar 

  23. Henrichsen, J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36: 478–503

    PubMed  CAS  Google Scholar 

  24. Herrera, M, Koutsoudis, M, von Bodman, SB (2004) Isolation and characterization of genes involved in the initial stages of biofilm development in Pantoea stewartii subsp. stewartii. Phytopathology 94: S41

    Google Scholar 

  25. Huber, B, Riedel, K, Hentzer, M, Heydorn, A, Gotschlich, A, Givskov, M, Molin, S, Eberl, L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147: 2517–2528

    PubMed  CAS  Google Scholar 

  26. Inoue, T, Shingaki, R, Hirose, S, Waki, K, Mori, H, Fukui, K (2007) Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol 189: 950–957

    Article  PubMed  CAS  Google Scholar 

  27. Izquierdo, L, Abitiu, N, Coderch, N, Hita, B, Merino, S, Gavin, R, Tomas, JM, Regue, M (2002) The inner-core lipopolysaccharide biosynthetic waaE gene: function and genetic distribution among some Enterobacteriaceae. Microbiology 148: 3485–3496

    PubMed  CAS  Google Scholar 

  28. Kim, W, Surette, MG (2004) Metabolic differentiation in actively swarming Salmonella. Mol Microbiol 54: 702–714

    Article  PubMed  CAS  Google Scholar 

  29. Koutsoudis, MD, Tsaltas, D, Minogue, TD, von Bodman, SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 103: 5983–5988

    Article  PubMed  CAS  Google Scholar 

  30. Macnab, RM (1996) Flagella and motility. In: Neidhardt, FC, et al. (Eds.) Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd ed., vol 1, ASM Press, Washington DC, pp 123–145

    Google Scholar 

  31. Malott, RJ, Baldwin, A, Mahenthiralingam, E, Sokol, PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73: 4982–4992

    Article  PubMed  CAS  Google Scholar 

  32. Mangan, EK, Malakooti, J, Caballero, A, Anderson, P, Ely, B, Gober, JW (1999) FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol 181: 6160–6170

    PubMed  CAS  Google Scholar 

  33. Martinez-Granero, F, Capdevila, S, Sanchez-Contreras, M, Martin, M, Rivilla, R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151: 975–983

    Article  PubMed  CAS  Google Scholar 

  34. Matthysse, AG, Yarnall, HA, Young, N (1996) Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 178: 5302–5308

    PubMed  CAS  Google Scholar 

  35. Michiels, J, Van Soom, T, D’hooghe, I, Dombrecht, B, Benhassine, T, de Wilde, P, Vanderleyden, J (1998a) The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 180: 1729–1740

    PubMed  CAS  Google Scholar 

  36. Michiels, J, Dombrecht, B, Vermeiren, H, Xi, C, Luyten, E, Vanderleyden, J (1998b) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26: 193–205

    Article  CAS  Google Scholar 

  37. Moris, M, Braeken, K, Schoeters, E, Verreth, C, Beullens, S, Vanderleyden, J, Michiels, J (2005) Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires thealarmone ppGpp. J Bacteriol 187: 5460–5469

    Article  PubMed  CAS  Google Scholar 

  38. Ochsner, UA, Wiser, J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92: 6424–6428

    Article  PubMed  CAS  Google Scholar 

  39. O’Toole, GA, Kolter, R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304

    Article  PubMed  CAS  Google Scholar 

  40. Overhage, J, Lewenza, S, Marr, AK, Hancock, RE (2007) Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 189: 2164–2169

    Article  PubMed  CAS  Google Scholar 

  41. Piper, KR, von Bodman, SB, Farrand, SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448–450

    Article  PubMed  CAS  Google Scholar 

  42. Pratt, LA, Kolter, R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2: 598–603

    Article  PubMed  CAS  Google Scholar 

  43. Rahman, MM, Guard-Petter, J, Asokan, K, Hughes, C, Carlson, RW (1999) The structure of the colony migration factor from pathogenic Proteus mirabilis. A capsular polysaccharide that facilitates swarming. J Biol Chem 274: 22993–22998

    Article  PubMed  CAS  Google Scholar 

  44. Ramey, BE, Koutsoudis, M, von Bodman, SB, Fuqua, C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7: 602–609

    Article  PubMed  CAS  Google Scholar 

  45. Rice, SA, Koh, KS, Queck, SY, Labbate, M, Lam, KW, Kjelleberg, S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187: 3477–3485

    Article  PubMed  CAS  Google Scholar 

  46. Ron, EZ, Rosenberg, E (2001) Natural roles of biosurfactants. Environ Microbiol 3: 229–236

    Article  PubMed  CAS  Google Scholar 

  47. Rosemeyer, V, Michiels, J, Verreth, C, Vanderleyden, J (1998) luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180: 815–821

    PubMed  CAS  Google Scholar 

  48. Samatey, FA, Matsunami, H, Imada, K, Nagashima, S, Shaikh, TR, Thomas, DR, Chen, JZ, Derosier, DJ, Kitao, A, Namba, K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431: 1062–1068

    Article  PubMed  CAS  Google Scholar 

  49. Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  50. Sanchez-Contreras, M, Martin, M, Villacieros, M, O’Gara, F, Bonilla, I, Rivilla, R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184: 1587–1596

    Article  PubMed  CAS  Google Scholar 

  51. Sauer, K, Camper, AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183: 6579–6589

    Article  PubMed  CAS  Google Scholar 

  52. Scharf, B, Schuster-Wolff-Buhring, H, Rachel, R, Schmitt, R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. J Bacteriol 183: 5334–5342

    Article  PubMed  CAS  Google Scholar 

  53. Sharma, M, Anand, SK (2002) Swarming: a coordinated bacterial activity. Curr Sci 83: 707–715

    CAS  Google Scholar 

  54. Shrout, JD, Chopp, DL, Just, CL, Hentzer, M, Givskov, M, Parsek, MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264–1277

    Article  PubMed  CAS  Google Scholar 

  55. Soto, MJ, Fernandez-Pascual, M, Sanjuan, J, Olivares, J (2002) A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol 43: 371–382

    Article  PubMed  CAS  Google Scholar 

  56. Sourjik, V, Sterr, W, Platzer, J, Bos, I, Haslbeck, M, Schmitt, R (1998) Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. Gene 223: 283–290

    Article  PubMed  CAS  Google Scholar 

  57. Sturgill, G, Rather, PN (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 51: 437–446

    Article  PubMed  CAS  Google Scholar 

  58. Toguchi, A, Siano, M, Burkart, M, Harshey, RM (2000) Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182: 6308–6321

    Article  PubMed  CAS  Google Scholar 

  59. Venturi, V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30: 274–291

    Article  PubMed  CAS  Google Scholar 

  60. Van Brussel, AA, Zaat, SA, Wijffelman, CA, Pees, E, Lugtenberg, BJ (1985) Bacteriocin small of fast-growing rhizobia is chloroform soluble and is not required for effective nodulation. J Bacteriol 162: 1079–1082

    PubMed  Google Scholar 

  61. von Bodman, SB, Koutsoudis, M, Minogue, TD (2003) Steps in biofilm formation and infection in Pantoea stewartii subsp. stewartii. Phytopathology 92: S97

    Google Scholar 

  62. Wang, Q, Mariconda, S, Suzuki, A, McClelland, M, Harshey, RM (2006) Uncovering a large set of genes that affect surface motility in Salmonella enterica serovar Typhimurium. J Bacteriol 188: 7981–7984

    Article  PubMed  CAS  Google Scholar 

  63. Wang, Q, Frye, JG, McClelland, M, Harshey, RM (2004) Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52: 169–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KB was aspirant of the Fund for Scientific Research-Flanders and is recipient of a postdoctoral fellowship from the Research Council of the K. U. Leuven (PDM/06/196). KV and MF are recipients of a fellowship from the IWT-Flanders. This work was supported by grants from the Research Council of the K. U. Leuven (GOA/2003/09 and IDO/05/012) and from the Fund for Scientific Research-Flanders (G.0637.06 and G.0287.04). We thank Prof. I. Lambrichts (Hasselt University) for help with the TEM protocol and C. Heusdens for technical assistance.

Kristien Braeken, Ruth Daniels, Karen Vos contributed equally to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeken, K., Daniels, R., Vos, K. et al. Genetic Determinants of Swarming in Rhizobium etli . Microb Ecol 55, 54–64 (2008). https://doi.org/10.1007/s00248-007-9250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9250-1

Keywords

Navigation