Skip to main content

Production, Characterization, and Applications of Biodegradable Polymer: Polyhydroxyalkanoates

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Abstract

The usage of petroleum-based polymers by the human beings has enhanced the quality and comfort of life in the recent decades. These polymers are extremely persistent in the environment, and none of the conventional techniques can effectively degrade such polymers. A remedy to this issue is the application of biodegradable polymers from different organic sources. Biodegradable polymers are comprised of monomers that are linked with one another through various functional groups with unstable links in the backbone. During degradation, these polymers are broken down into molecules that are degradable by conventional biological techniques. Biodegradable polymers have been synthesized from four different sources: agro-resources, microorganisms, biotechnological renewable sources, and classical chemical synthesis. Polyhydroxyalkanoates (PHAs) are one of the prime substitutes for conventional plastics because they are derived from renewable feedstock by fermentation and are completely biodegradable upon disposal. The fermentation route for the synthesis of PHAs is one of the best substitutes for petroleum-derived polymers. PHAs have excellent physical characteristics, such as low toxicity and high molecular weight, and they can be naturally produced from several carbon sources using numerous microorganisms. Moreover, they possess mechanical and physical properties similar to synthetic plastics such as polyethylene and polypropylene like tensile strength and melting point, etc. More than 300 different types of bacteria, including both gram-positive and gram-negative strains, produce PHAs. In order to reduce the production cost of PHAs, several inexpensive substrates, such as whey, malt, soy and starch waste, palm oil, beet, and cane molasses, are being used. In the recent past, several invasive weed biomasses have been used in the microbial fermentation process for the production of PHAs. This invasive alien species (IAS) is non-native to an ecosystem and when introduced outside its natural habitats, affects the native biodiversity in almost every ecosystem. Hence, the production of Poly(3-hydroxybutyrate) (PHB) using these invasive weeds is a brand new technology for the production of biodegradable polymers. Various blends like copolymers have been developed to improve the cost, performance, and physical properties of PHAs. Several PHA nanocomposites have been developed to enhance mechanical properties. PHAs degrade into carbon dioxide and water under aerobic conditions and to methane under anaerobic conditions without any harmful products. These biopolymers can also be degraded either by thermal mode or by enzymatic hydrolysis. The last two decades have seen a shift from bio-stable materials to biodegradable (i.e., hydrolytically and enzymatically) materials for medical and related applications. Initially, PHAs were used in the packaging industry, but their importance was later shifted to the medical industry, pharmacological, and agricultural sectors. This chapter addresses the synthesis and benefits of PHAs over petroleum-derived polymers, their biodegradable characteristics, and applications in several sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Paula FC, de Paula CB, Contiero J (2018) Prospective biodegradable plastics from biomass conversion processes. Biofuels: state of development:245–271 https://doi.org/10.5772/intechopen.75111

  2. Anne B (2011) Environmental-friendly biodegradable polymers and composites. Integrated waste management-volume I. InTechOpen https://doi.org/10.5772/16541

  3. Roy I, Visakh P (2014) Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites. R Soc Chem. https://doi.org/10.1039/9781782622314

    Article  Google Scholar 

  4. Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754. https://doi.org/10.3390/polym6030706

    Article  CAS  Google Scholar 

  5. Chan CM, Vandi L-J, Pratt S, Halley P, Richardson D, Werker A, Laycock B (2018) Composites of wood and biodegradable thermoplastics: a review. Polym Rev 58:444–494. https://doi.org/10.1080/15583724.2017.1380039

    Article  CAS  Google Scholar 

  6. Amache R, Sukan A, Safari M, Roy I, Keshavarz T (2013) Advances in PHAs production. Chem Eng Trans 32:931–936. https://doi.org/10.3303/CET1332156

    Article  Google Scholar 

  7. Huang JC, Shetty AS, Wang MS (1990) Biodegradable plastics: a review. Adv Polym Technol 10:23–30. https://doi.org/10.1002/adv.1990.060100103

    Article  CAS  Google Scholar 

  8. Girdhar A, Bhatia M, Nagpal S, Kanampalliwar A, Tiwari A (2013) Process parameters for influencing polyhydroxyalkanoate producing bacterial factories: an overview. J Pet Environ Biotechnol 4:2. https://doi.org/10.4172/2157-7463.1000155

    Article  CAS  Google Scholar 

  9. Chodak I (2008) Polyhydroxyalkanoates: origin, properties and applications. Monomers, polymers and composites from renewable resources. Elsevier, pp 451–477 https://doi.org/10.1016/b978-0-08-045316-3.00022-3

  10. Alves MI, Macagnan KL, Rodrigues AA, de Assis DA, Torres MM, de Oliveira PD, Furlan L, Vendruscolo CT, Moreira AdS (2017) Poly (3-hydroxybutyrate)-P (3HB): review of production process technology. Ind Biotechnol 13:192–208. https://doi.org/10.1089/ind.2017.0013

    Article  CAS  Google Scholar 

  11. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotech 65:127–161. https://doi.org/10.1016/S0168-1656(98)00126-6

    Article  CAS  Google Scholar 

  12. Wallen LL, Rohwedder WK (1974) Poly-. beta.-hydroxyalkanoate from activated sludge. Environ Sci Technol 8:576–579. https://doi.org/10.1021/es60091a007

    Article  CAS  Google Scholar 

  13. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898. https://doi.org/10.1002/bit.260430908

    Article  CAS  Google Scholar 

  14. Abdullah AA-A (2015) Microbial-based polyhydroxyalkanoates. Smithers Rapra

    Google Scholar 

  15. Sharma PK, Munir RI, Blunt W, Dartiailh C, Cheng J, Charles TC, Levin DB (2017) Synthesis and physical properties of polyhydroxyalkanoate polymers with different monomer compositions by recombinant pseudomonas putida LS46 Expressing a Novel PHA synthase (PhaC116) enzyme. Appl Sci 7:242. https://doi.org/10.3390/app7030242

    Article  CAS  Google Scholar 

  16. Ghaemy M, Haj MM, Tabaraki R (2000) Study of crystallinity of high-density polyethylene by inverse gas chromatography. 9:117–124

    Google Scholar 

  17. Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Eng Life Sci 13:549–562. https://doi.org/10.1002/elsc.201300021

    Article  CAS  Google Scholar 

  18. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23:362. https://doi.org/10.3390/molecules23020362

    Article  CAS  Google Scholar 

  19. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Nature Biotechnol 13:142

    Google Scholar 

  20. Sheu D-S, Lee C-Y (2004) Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from pseudomonas putida GPo1 by localized semirandom mutagenesis. J Bacteriol 186:4177–4184. https://doi.org/10.1128/JB.186.13.4177-4184.2004

    Article  CAS  Google Scholar 

  21. Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym Plast Technol Eng 43:1779–1793. https://doi.org/10.1081/PPT-200040130

    Article  CAS  Google Scholar 

  22. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619. https://doi.org/10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  23. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282. https://doi.org/10.1016/j.micres.2016.07.010

    Article  CAS  Google Scholar 

  24. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011 https://doi.org/10.1155/2011/693253

  25. Shang L, Jiang M, Chang HN (2003) Poly (3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol Lett 25:1415–1419. https://doi.org/10.1023/A:1025047410699

    Article  CAS  Google Scholar 

  26. Lemoigne M (1926) Produits de Deshydration et de Polymerisation de L’acide β=Oxybutyrique. Bull Soc Chim Biol 8:770–782

    Google Scholar 

  27. Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97

    Google Scholar 

  28. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21. https://doi.org/10.1016/S0169-409X(01)00218-6

    Article  CAS  Google Scholar 

  29. Muhammadi Shabina, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8:56–77. https://doi.org/10.1080/17518253.2015.1109715

    Article  CAS  Google Scholar 

  30. Nitschke M, Costa SG, Contiero J (2011) Rhamnolipids and PHAs: recent reports on pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46:621–630. https://doi.org/10.1016/j.procbio.2010.12.012

    Article  CAS  Google Scholar 

  31. Sathya A, Sivasubramanian V, Santhiagu A, Sebastian C, Sivashankar R (2018) Production of polyhydroxyalkanoates from renewable sources using bacteria. J Polym Environ:1–18 https://doi.org/10.1007/s10924-018-1259-7

  32. Sabirova JS, Ferrer M, Lünsdorf H, Wray V, Kalscheuer R, Steinbüchel A, Timmis KN, Golyshin PN (2006) Mutation in a “tesB-like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J Bacteriol 188:8452–8459. https://doi.org/10.1128/JB.01321-06

    Article  CAS  Google Scholar 

  33. Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 8:47. https://doi.org/10.1186/1475-2859-8-47

    Article  CAS  Google Scholar 

  34. Ashby RD, Solaiman DK, Foglia TA (2005) Synthesis of short-/medium-chain-length poly (hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromol 6:2106–2112. https://doi.org/10.1021/bm058005h

    Article  CAS  Google Scholar 

  35. Ben M, Mato T, Lopez A, Vila M, Kennes C, Veiga MC (2011) Bioplastic production using wood mill effluents as feedstock. Water Sci Technol 63:1196–1202. https://doi.org/10.2166/wst.2011.358

    Article  CAS  Google Scholar 

  36. De Grazia G, Quadri L, Majone M, Morgan-Sagastume F, Werker A (2017) Influence of temperature on mixed microbial culture polyhydroxyalkanoate production while treating a starch industry wastewater. J Environ Chem Eng 5:5067–5075. https://doi.org/10.1016/j.jece.2017.09.041

    Article  CAS  Google Scholar 

  37. Luengo JM, Garcı́a B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260 https://doi.org/10.1016/s1369-5274(03)00040-7

  38. Huijberts G, Eggink G, De Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly (3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    Article  CAS  Google Scholar 

  39. Inoue D, Suzuki Y, Uchida T, Morohoshi J, Sei K (2016) Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge. J Biosci Bioeng 121:47–51. https://doi.org/10.1016/j.jbiosc.2015.04.022

    Article  CAS  Google Scholar 

  40. Jiang G, Hill D, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157. https://doi.org/10.3390/ijms17071157

    Article  CAS  Google Scholar 

  41. Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29. https://doi.org/10.1016/S0141-8130(00)00150-1

    Article  CAS  Google Scholar 

  42. de Almeida A, Giordano AM, Nikel PI, Pettinari MJ (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76:2036–2040. https://doi.org/10.1128/AEM.02706-09

    Article  CAS  Google Scholar 

  43. Arikawa H, Matsumoto K, Fujiki T (2017) Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W. Appl Microbiol Biotechnol 101:7497–7507. https://doi.org/10.1007/s00253-017-8470-7

    Article  CAS  Google Scholar 

  44. Beccari M, Bertin L, Dionisi D, Fava F, Lampis S, Majone M, Valentino F, Vallini G, Villano M (2009) Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic-aerobic process. J Chem Technol Biotechnol 84:901–908. https://doi.org/10.1002/jctb.2173

    Article  CAS  Google Scholar 

  45. Ben M, Kennes C, Veiga MC (2016) Optimization of polyhydroxyalkanoate storage using mixed cultures and brewery wastewater. J Chem Technol Biotechnol 91:2817–2826. https://doi.org/10.1002/jctb.4891

    Article  CAS  Google Scholar 

  46. Bengtsson S, Werker A, Welander T (2008) Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater. Water Sci Technol 58:323–330. https://doi.org/10.2166/wst.2008.381

    Article  CAS  Google Scholar 

  47. Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, Mukherjee J (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2:34. https://doi.org/10.1186/2191-0855-2-34

    Article  CAS  Google Scholar 

  48. Bhubalan K, Lee W-H, Loo C-Y, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym Degrad Stab 93:17–23 https://doi.org/10.1016/j.polymdegradstab.2007.11.004

  49. Campanari S, Augelletti F, Rossetti S, Sciubba F, Villano M, Majone M (2017) Enhancing a multi-stage process for olive oil mill wastewater valorization towards polyhydroxyalkanoates and biogas production. Chem Eng J 317:280–289. https://doi.org/10.1016/j.cej.2017.02.094

    Article  CAS  Google Scholar 

  50. Cavalheiro JM, de Almeida MCM, Grandfils C, Da Fonseca M (2009) Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515. https://doi.org/10.1016/j.procbio.2009.01.008

    Article  CAS  Google Scholar 

  51. Cesário MT, Raposo RS, de Almeida MCM, van Keulen F, Ferreira BS, da Fonseca MMR (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N Biotechnol 31:104–113. https://doi.org/10.1016/j.nbt.2013.10.004

    Article  CAS  Google Scholar 

  52. Chaleomrum N, Chookietwattana K, Dararat S (2014) Production of PHA from cassava starch wastewater in sequencing batch reactor treatment system. APCBEE Procedia 8:167–172. https://doi.org/10.1016/j.apcbee.2014.03.021

    Article  CAS  Google Scholar 

  53. Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629. https://doi.org/10.1007/s13213-010-0181-6

    Article  CAS  Google Scholar 

  54. Chee JY, Lau NS, Samian MR, Tsuge T, Sudesh K (2012) Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from palm oil products. J Appl Microbiol 112:45–54. https://doi.org/10.1111/j.1365-2672.2011.05189

    Article  CAS  Google Scholar 

  55. Chen CW, Don T-M, Yen H-F (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41:2289–2296. https://doi.org/10.1016/j.procbio.2006.05.026

    Article  CAS  Google Scholar 

  56. de Paula FC, Kakazu S, de Paula CBC, Gomez JGC, Contiero J (2017) Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. J King Saud Univ Sci 29:166–173. https://doi.org/10.1016/j.jksus.2016.07.002

    Article  Google Scholar 

  57. Devi AB, Nachiyar CV, Kaviyarasi T, Samrot AV (2015) Characterization of polyhydroxybutyrate synthesized by Bacillus cereus. Int J Pharm Pharm Sci 7:140–144

    CAS  Google Scholar 

  58. Eshtaya MK, Nor ‘Aini AR, Hassan MA (2013) Bioconversion of restaurant waste into Polyhydroxybutyrate (PHB) by recombinant E. coli through anaerobic digestion. Int J Environ Waste Manag 11:27–37 https://doi.org/10.1504/ijewm.2013.050521

  59. Freches A, Lemos PC (2017) Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: effect of OLR and cycle length. N Biotechnol 39:22–28

    Article  CAS  Google Scholar 

  60. Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256. https://doi.org/10.1016/j.nbt.2017.05.011

    Article  CAS  Google Scholar 

  61. Hafuka A, Sakaida K, Satoh H, Takahashi M, Watanabe Y, Okabe S (2011) Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Bioresour Technol 102:3551–3553. https://doi.org/10.1016/j.biortech.2010.09.018

    Article  CAS  Google Scholar 

  62. Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812. https://doi.org/10.1007/s11274-007-9543-z

    Article  CAS  Google Scholar 

  63. He W, Tian W, Zhang G, Chen G-Q, Zhang Z (1998) Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett 169:45–49. https://doi.org/10.1111/j.1574-6968.1998.tb13297.x

    Article  CAS  Google Scholar 

  64. Huang T-Y, Duan K-J, Huang S-Y, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706. https://doi.org/10.1007/s10295-006-0098-z

    Article  CAS  Google Scholar 

  65. Jiang Y, Marang L, Tamis J, van Loosdrecht MC, Dijkman H, Kleerebezem R (2012) Waste to resource: converting paper mill wastewater to bioplastic. Water Res 46:5517–5530. https://doi.org/10.1016/j.watres.2012.07.028

    Article  CAS  Google Scholar 

  66. Khardenavis AA, Kumar MS, Mudliar SN, Chakrabarti T (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly β-hydroxybutyrate. Bioresour Technol 98:3579–3584. https://doi.org/10.1016/j.biortech.2006.11.024

    Article  CAS  Google Scholar 

  67. Kim BS (2000) Production of poly (3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb Technol 27:774–777. https://doi.org/10.1016/S0141-0229(00)00299-4

    Article  CAS  Google Scholar 

  68. Koller M (2015) Recycling of waste streams of the biotechnological poly (hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015 https://doi.org/10.1155/2015/370164

  69. Lau N-S, Sudesh K (2012) Revelation of the ability of Burkholderi a sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB express 2:41 https://doi.org/10.1186/2191-0855-2-41

  70. Liu H-Y, Hall PV, Darby JL, Coats ER, Green PG, Thompson DE, Loge FJ (2008) Production of polyhydroxyalkanoate during treatment of tomato cannery wastewater. Water Environ Res 80:367–372. https://doi.org/10.2175/106143007X221535

    Article  CAS  Google Scholar 

  71. Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF (2014) Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 41:1353–1363. https://doi.org/10.1007/s10295-014-1485-5

    Article  CAS  Google Scholar 

  72. Moita R, Freches A, Lemos P (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20. https://doi.org/10.1016/j.watres.2014.03.066

    Article  CAS  Google Scholar 

  73. Nikel PI, Giordano AM, de Almeida A, Godoy MS, Pettinari MJ (2010) Elimination of D-lactate synthesis increases poly (3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microbiol 76:7400–7406. https://doi.org/10.1128/AEM.02067-10

    Article  CAS  Google Scholar 

  74. Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890. https://doi.org/10.1007/s00253-014-5653-3

    Article  CAS  Google Scholar 

  75. Pais J, Serafim LS, Freitas F, Reis MA (2016) Conversion of cheese whey into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. N Biotechnol 33:224–230. https://doi.org/10.1016/j.nbt.2015.06.001

    Article  CAS  Google Scholar 

  76. Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44:847–853. https://doi.org/10.1016/j.procbio.2009.04.002

    Article  CAS  Google Scholar 

  77. Poblete-Castro I, Rodriguez AL, Lam CMC, Kessler W (2013) Improved production of medium-chain-length Polyhydroxyalkanotes in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J Microbiol Biotechnol

    Google Scholar 

  78. Poomipuk N, Reungsang A, Plangklang P (2014) Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. Int J Biol Macromol 65:51–64. https://doi.org/10.1016/j.ijbiomac.2014.01.002

    Article  CAS  Google Scholar 

  79. Povolo S, Toffano P, Basaglia M, Casella S (2010) Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour Technol 101:7902–7907. https://doi.org/10.1016/j.biortech.2010.05.029

    Article  CAS  Google Scholar 

  80. Pradhan S, Borah AJ, Poddar MK, Dikshit PK, Rohidas L, Moholkar VS (2017) Microbial Production, Ultrasound-Assisted Extraction and Characterization of Biopolymer Polyhydroxybutyrate (PHB) from Terrestrial (P. hysterophorus) and Aquatic (E. crassipes) Invasive Weeds. Bioresour Technol 242:304–310. https://doi.org/10.1016/j.biortech.2017.03.117

    Article  CAS  Google Scholar 

  81. Rojas-Rosas O, Villafaña-Rojas J, López-Dellamary FA, Nungaray-Arellano J, González-Reynoso O (2007) Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source. Can J Microbiol 53:840–851. https://doi.org/10.1139/W07-023

    Article  CAS  Google Scholar 

  82. Saranya V, Shenbagarathai R (2011) Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Braz J Microbiol 42:1109–1118. https://doi.org/10.1590/S1517-838220110003000032

    Article  CAS  Google Scholar 

  83. Sato S, Maruyama H, Fujiki T, Matsumoto K (2015) Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J Biosci Bioeng 120:246–251. https://doi.org/10.1016/j.jbiosc.2015.01.016

    Article  CAS  Google Scholar 

  84. Sindhu R, Silviya N, Binod P, Pandey A (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72. https://doi.org/10.1016/j.bej.2012.12.015

    Article  CAS  Google Scholar 

  85. Taniguchi I, Kagotani K, Kimura Y (2003) Microbial production of poly (hydroxyalkanoate) s from waste edible oils. Green Chem 5:545–548. https://doi.org/10.1039/B304800B

    Article  CAS  Google Scholar 

  86. Tobella LM, Bunster M, Pooley A, Becerra J, Godoy F, Martínez MA (2005) Biosynthesis of poly-β-hydroxyalkanoates by Sphingopyxis chilensis S37 and Wautersia sp. PZK cultured in cellulose pulp mill effluents containing 2, 4, 6-trichlorophenol. J Ind Microbiol Biotechnol 32:397–401. https://doi.org/10.1007/s10295-005-0011-1

    Article  CAS  Google Scholar 

  87. Van-Thuoc D, Quillaguaman J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly (3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428. https://doi.org/10.1111/j.1365-2672.2007.03553.x

    Article  CAS  Google Scholar 

  88. Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527. https://doi.org/10.1128/AEM.07020-11

    Article  CAS  Google Scholar 

  89. Wang Y, Zhao F, Fan X, Wang S, Song C (2016) Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina. Biotechnol Lett 38:313–320. https://doi.org/10.1007/s10529-015-1980-4

    Article  CAS  Google Scholar 

  90. Yamane T, Fukunaga M, Lee YW (1996) Increased PHB productivity by high‐cell‐density fed‐batch culture of Alcaligenes latus, a growth‐associated PHB producer. Biotechnol Bioeng 50:197–202 https://doi.org/10.1002/(sici)1097-0290(19960420)50:2%3c197::aid-bit8%3e3.0.co;2-h

  91. Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048. https://doi.org/10.1016/j.biortech.2008.03.071

    Article  CAS  Google Scholar 

  92. Yu P, Chua H, Huang A, Lo W, Chen G (1998) Conversion of food industrial wastes into bioplastics. Appl Biochem Biotechnol 70:603–614. https://doi.org/10.1007/BF02920172

    Article  Google Scholar 

  93. Zakaria MR, Tabatabaei M, Ghazali FM, Abd-Aziz S, Shirai Y, Hassan MA (2010) Polyhydroxyalkanoate production from anaerobically treated palm oil mill effluent by new bacterial strain Comamonas sp. EB172. World J Microbiol Biotechnol 26:767–774. https://doi.org/10.1007/s11274-009-0232-y

    Article  CAS  Google Scholar 

  94. Park SJ, Jang YA, Noh W, Oh YH, Lee H, David Y, Baylon MG, Shin J, Yang JE, Choi SY (2015) Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol Bioeng 112:638–643. https://doi.org/10.1002/bit.25469

    Article  CAS  Google Scholar 

  95. Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enzym Microb Technol 25:132–141. https://doi.org/10.1016/S0141-0229(99)00023-X

    Article  CAS  Google Scholar 

  96. Tanamool V, Imai T, Danvirutai P, Kaewkannetra P (2010) Screening, identification and production of polyhydroxyalkanoates (PHAs) by sucrose utilizing microbes isolated from soil environments. J Biotechnol 150:361. https://doi.org/10.1016/j.jbiotec.2010.09.419

    Article  Google Scholar 

  97. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    Article  CAS  Google Scholar 

  98. Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29:135–144. https://doi.org/10.15255/CABEQ.2014.2253

    Article  CAS  Google Scholar 

  99. Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S (2016) The opportunity for high-performance biomaterials from methane. Microorganisms 4:11. https://doi.org/10.3390/microorganisms4010011

    Article  CAS  Google Scholar 

  100. Alavi S, Thomas S, Sandeep K, Kalarikkal N, Varghese J, Yaragalla S (2014) Polymers for packaging applications. CRC Press

    Google Scholar 

  101. Ren21 R (2016) Global status report. REN21 secretariat, Paris. United Nations Environment Program, Paris, France, p 272

    Google Scholar 

  102. Wu TY, Mohammad AW, Jahim JM, Anuar N (2009) A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27:40–52. https://doi.org/10.1016/j.biotechadv.2008.08.005

    Article  CAS  Google Scholar 

  103. Hassan MA, Shirai Y, Kusubayashi N, Karim MIA, Nakanishi K, Hashimoto K (1996) Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. J Ferment Bioeng 82:151–156. https://doi.org/10.1016/0922-338X(96)85038-0

    Article  CAS  Google Scholar 

  104. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc Lond B Biol Sci 365:3065–3081. https://doi.org/10.1098/rstb.2010.0126

    Article  Google Scholar 

  105. Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P (2017) Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol 248:37–56. https://doi.org/10.1016/j.biortech.2017.06.145

    Article  CAS  Google Scholar 

  106. Lucifero N (2016) Food Loss and Waste in the EU Law between sustainability of well-being and the implications on food system and on environment. Agric Agric Sci Procedia 8:282–289. https://doi.org/10.1016/j.aaspro.2016.02.022

    Article  Google Scholar 

  107. Gomez JG, Méndez BS, Nikel PI, Pettinari MJ, Prieto MA, Silva LF (2011) Making green polymers even greener: towards sustainable production of poly (hydroxy-alkanoates) from agroindustrial by-products. Advances in applied biotechnology. InTechOpen https://doi.org/10.5772/31847

  108. Kimura H, Takahashi T, Hiraka H, Iwama M, Takeishi M (1999) Effective biosynthesis of poly (3-hydroxybutyrate) from plant oils by Chromobacterium sp. Polym J 31:210

    Article  CAS  Google Scholar 

  109. Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD (2017) Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 10:1338–1352. https://doi.org/10.1111/1751-7915.12776

    Article  CAS  Google Scholar 

  110. Solaiman DK, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and coproducts into poly (hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789. https://doi.org/10.1007/s00253-006-0451-1

    Article  CAS  Google Scholar 

  111. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. https://doi.org/10.1016/j.cbpa.2006.02.035

    Article  CAS  Google Scholar 

  112. Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustainable Chem 2:48–53. https://doi.org/10.1016/j.cogsc.2016.09.003

    Article  Google Scholar 

  113. Zhang Y-HP, Berson E, Sarkanen S, Dale BE (2009) Sessions 3 and 8: pretreatment and biomass recalcitrance: fundamentals and progress. Appl Biochem Biotechnol 153:80–83. https://doi.org/10.1007/s12010-009-8610-3

    Article  CAS  Google Scholar 

  114. Ryu HW, Cho KS, Goodrich PR, Park C-H (2008) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol Bioprocess Eng 13:651–658. https://doi.org/10.1007/s12257-008-0072-x

    Article  CAS  Google Scholar 

  115. Yan S, Tyagi R, Surampalli R (2006) Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci Technol 53:175–180

    Article  CAS  Google Scholar 

  116. Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J 39:15–27. https://doi.org/10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  117. Chanprateep S, Buasri K, Muangwong A, Utiswannakul P (2010) Biosynthesis and biocompatibility of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95:2003–2012. https://doi.org/10.1016/j.polymdegradstab.2010.07.014

    Article  CAS  Google Scholar 

  118. Chen Y, Chen J, Yu C, Du G, Lun S (1999) Recovery of poly-3-hydroxybutyrate from Alcaligenes eutrophus by surfactant-chelate aqueous system. Process Biochem 34:153–157. https://doi.org/10.1016/S0032-9592(98)00082-X

    Article  CAS  Google Scholar 

  119. Hahn SK, Chang YK, Kim BS, Chang HN (1994) Optimization of microbial poly (3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Bioeng 44:256–261. https://doi.org/10.1002/bit.260440215

    Article  CAS  Google Scholar 

  120. Holmes PA, Lim GB (1990) Separation process. Google Patents

    Google Scholar 

  121. Kathiraser Y, Aroua MK, Ramachandran KB, Tan IKP (2007) Chemical characterization of medium-chain-length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration. J Chem Technol Biotechnol 82:847–855. https://doi.org/10.1002/jctb.1751

    Article  CAS  Google Scholar 

  122. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5:620–634

    Article  Google Scholar 

  123. Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56. https://doi.org/10.1016/j.ibiod.2017.10.001

    Article  CAS  Google Scholar 

  124. Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    Article  CAS  Google Scholar 

  125. Ranjan A, Singh S, Malani RS, Moholkar VS (2016) Ultrasound-assisted bioalcohol synthesis: review and analysis. RSC Adv 6:65541–65562. https://doi.org/10.1039/C6RA11580B

    Article  CAS  Google Scholar 

  126. Poddar MK, Pradhan S, Moholkar VS, Arjmand M, Sundararaj U (2018) Ultrasound-assisted synthesis and characterization of polymethyl methacrylate/reduced graphene oxide nanocomposites. AIChE J 64:673–687. https://doi.org/10.1002/aic.15936

    Article  CAS  Google Scholar 

  127. Malani RS, Pradhan S, Goyal A, Moholkar VS (2016) Ultrasound-Assisted Interesterification of Waste cooking Oil with Heterogeneous Catalyst. In: LAMSYS 2016, Satish Dhawan Space Centre (SDSC), ISRO, Sriharikota

    Google Scholar 

  128. Pradhan S, Dikshit PK, Moholkar VS (2018) Production, ultrasonic extraction, and characterization of poly (3-hydroxybutyrate)(PHB) using Bacillus megaterium and Cupriavidus necator. Polym Adv Technol 29:2392–2400. https://doi.org/10.1002/pat.4351

    Article  CAS  Google Scholar 

  129. Vrábel P, Hronský V, Fričová O, Koval’aková M, Chodák I, Alexy P (2014) Solid State 13 C NMR Study of Modified Polyhydroxybutyrate. Acta Phys Pol, A 126:419–420. https://doi.org/10.12693/APhysPolA.126.419

    Article  CAS  Google Scholar 

  130. Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430. https://doi.org/10.1002/btpr.355

    Article  CAS  Google Scholar 

  131. Shang L, Yim SC, Park HG, Chang HN (2004) Sequential Feeding of Glucose and Valerate in a Fed-Batch Culture of Ralstonia eutropha for Production of Poly (hydroxybutyrate-co-hydroxyvalerate) with High 3-Hydroxyvalerate Fraction. Biotechnol Progr 20:140–144

    Article  CAS  Google Scholar 

  132. Bhati R, Mallick N (2012) Production and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  133. Gumel AM, Annuar MSM, Heidelberg T (2012) Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS ONE 7:e45214

    Article  CAS  Google Scholar 

  134. Cyras VP, Soledad CM, Analía V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50:6274–6280

    Article  CAS  Google Scholar 

  135. Baskaran M, Hashim R, Said N, Raffi SM, Balakrishnan K, Sudesh K, Sulaiman O, Arai T, Kosugi A, Mori Y (2012) Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates. Compos Part B: Eng 43:1109–1116

    Article  CAS  Google Scholar 

  136. Mousavioun P, Doherty WO, George G (2010) Thermal stability and miscibility of poly (hydroxybutyrate) and soda lignin blends. Ind Crop Prod 32:656–661

    Article  CAS  Google Scholar 

  137. Mottin AC, Ayres E, Oréfice RL, Câmara JJD (2016) What changes in poly (3-hydroxybutyrate)(PHB) when processed as electrospun nanofibers or thermo-compression molded film? Mat Res 19:57–66

    Article  Google Scholar 

  138. Sun X, Guo L, Sato H, Ozaki Y, Yan S, Takahashi I (2011) A study on the crystallization behavior of poly (β-hydroxybutyrate) thin films on si wafers. Polymer 52:3865–3870

    Article  CAS  Google Scholar 

  139. Senhorini GA, Zawadzki SF, Farago PV, Zanin SM, Marques FA (2012) Microparticles of poly (hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: preparation and characterization. Mater Sci Eng, C 32:1121–1126

    Article  CAS  Google Scholar 

  140. Canetti M, Urso M, Sadocco P (1999) Influence of the morphology and of the supermolecular structure on the enzymatic degradation of bacterial poly (3-hydroxybutyrate). Polymer 40:2587–2594

    Article  CAS  Google Scholar 

  141. Chen L, Wang M (2002) Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 23:2631–2639

    Article  CAS  Google Scholar 

  142. Oliveira FC, Dias ML, Castilho LR, Freire DM (2007) Characterization of poly (3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour Technol 98:633–638

    Article  CAS  Google Scholar 

  143. Chaijamrus S, Udpuay N (2008) Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agric Eng Int X:1–12

    Google Scholar 

  144. Cheng S-T, Chen Z-F, Chen G-Q (2008) The expression of cross-linked elastin by rabbit blood vessel smooth muscle cells cultured in polyhydroxyalkanoate scaffolds. Biomaterials 29:4187–4194. https://doi.org/10.1016/j.biomaterials.2008.07.022

    Article  CAS  Google Scholar 

  145. Pradhan S, Dikshit PK, Moholkar VS (2018) Production and characterization of biodegradable polymer poly (3-hydroxybutyrate) using ultrasound assisted extraction. In: Abstracts of papers of the American Chemical Society, Boston, MA. Amer Chemical Soc 1155 16th St, NW, Washington, DC 20036 USA. https://scholar.google.com/scholar?hl=en&as_sdt=0,37&cluster=12756667527516586406

  146. Xie WP, Chen G-Q (2008) Production and characterization of terpolyester poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38:384–389. https://doi.org/10.1016/j.bej.2007.08.002

    Article  CAS  Google Scholar 

  147. Carrasco F, Dionisi D, Martinelli A, Majone M (2006) Thermal stability of polyhydroxyalkanoates. J Appl Polym Sci 100:2111–2121. https://doi.org/10.1002/app.23586

    Article  CAS  Google Scholar 

  148. Zhao W, Chen G-Q (2007) Production and characterization of terpolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem 42:1342–1347. https://doi.org/10.1016/j.procbio.2007.07.006

    Article  CAS  Google Scholar 

  149. Wong Y-M, Brigham CJ, Rha C, Sinskey AJ, Sudesh K (2012) Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121:320–327. https://doi.org/10.1016/j.biortech.2012.07.015

    Article  CAS  Google Scholar 

  150. Lau N-S, Tsuge T, Sudesh K (2011) Formation of new polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer in Burkholderia sp. Appl Microbiol Biotechnol 89:1599–1609. https://doi.org/10.1007/s00253-011-3097-6

    Article  CAS  Google Scholar 

  151. He JD, Cheung MK, Yu PH, Chen GQ (2001) Thermal analyses of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). J Appl Polym Sci 82:90–98. https://doi.org/10.1002/app.1827

    Article  CAS  Google Scholar 

  152. Wong AL, Chua H, Yu PHF (2000) Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. In: Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Springer, pp 843–857

    Google Scholar 

  153. Mizuno K, Ohta A, Hyakutake M, Ichinomiya Y, Tsuge T (2010) Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym Degrad Stab 95:1335–1339. https://doi.org/10.1016/j.polymdegradstab.2010.01.033

    Article  CAS  Google Scholar 

  154. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632. https://doi.org/10.1016/j.jbiosc.2010.07.014

    Article  CAS  Google Scholar 

  155. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247. https://doi.org/10.1002/jctb.1667

    Article  CAS  Google Scholar 

  156. Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3:18–24

    Article  CAS  Google Scholar 

  157. Bharti S, Swetha G (2016) Need for bioplastics and role of biopolymer PHB: a short review. J Pet Environ Biotechnol 7:272. https://doi.org/10.4172/2157-7463.1000272

    Article  Google Scholar 

  158. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14 https://doi.org/10.1002/(sici)1097-0290(19960105)49:1%3c1::aid-bit1%3e3.0.co;2-p

  159. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  CAS  Google Scholar 

  160. Mergaert J, Anderson C, Wouters A, Swings J, Kersters K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 9:317–321

    Article  CAS  Google Scholar 

  161. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269. https://doi.org/10.1007/s12088-017-0651-7

    Article  CAS  Google Scholar 

  162. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F (2018) Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications-review. Int J Biol Macromol 120:1294–1305. https://doi.org/10.1016/j.ijbiomac.2018.09.002

    Article  CAS  Google Scholar 

  163. Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind 1:52–60. https://doi.org/10.6000/1927-3037.2012.01.01.03

    Article  CAS  Google Scholar 

  164. Kai D, Loh XJ (2013) Polyhydroxyalkanoates: chemical modifications toward biomedical applications. ACS Sustain Chem Eng 2:106–119. https://doi.org/10.1021/sc400340p

    Article  CAS  Google Scholar 

  165. Sevastianov V, Perova N, Shishatskaya E, Kalacheva G, Volova T (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14:1029–1042. https://doi.org/10.1163/156856203769231547

    Article  CAS  Google Scholar 

  166. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868. https://doi.org/10.1586/17434440.3.6.853

    Article  CAS  Google Scholar 

  167. Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44:2865–2879. https://doi.org/10.1039/c5cs00089k

    Article  CAS  Google Scholar 

  168. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38:2434–2446. https://doi.org/10.1039/b812677c

    Article  CAS  Google Scholar 

  169. Ivanov V, Stabnikov V, Ahmed Z, Dobrenko S, Saliuk A (2015) Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol 12:725–738. https://doi.org/10.1007/s13762-014-0505-3

    Article  CAS  Google Scholar 

  170. Gumel A, Annuar M, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605. https://doi.org/10.1007/s10924-012-0527-1

    Article  CAS  Google Scholar 

  171. Kynadi AS, Suchithra TV (2014) Polyhydroxyalkanoates: biodegradable plastics for environmental conservation. Industrial and Environmental Biotechnology. Studium Press (India) Pvt. Ltd., pp 1–15 https://doi.org/10.13140/rg.2.1.4642.5682

  172. Wang Y, Yin J, Chen G-Q (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65. https://doi.org/10.1016/j.copbio.2014.06.001

    Article  CAS  Google Scholar 

  173. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21. https://doi.org/10.1007/s002530051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayanand S. Moholkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, S., Dikshit, P.K., Moholkar, V.S. (2020). Production, Characterization, and Applications of Biodegradable Polymer: Polyhydroxyalkanoates. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_4

Download citation

Publish with us

Policies and ethics