Skip to main content
Log in

Penicillium decumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillium decumbens has been used in the industrial production of lignocellulolytic enzymes in China for more than 15 years. Conidiation is essential for most industrial fungi because conidia are used as starters in the first step of fermentation. To investigate the mechanism of conidiation in P. decumbens, we generated mutants defective in two central regulators of conidiation, FluG and BrlA. Deletion of fluG resulted in neither “fluffy” phenotype nor alteration in conidiation, indicating possible different upstream mechanisms activating brlA between P. decumbens and Aspergillus nidulans. Deletion of brlA completely blocked conidiation. Further investigation of brlA expression in different media (nutrient-rich or nutrient-poor) and different culture states (liquid or solid) showed that brlA expression is required but not sufficient for conidiation. The brlA deletion strain exhibited altered hyphal morphology with more branches. Genome-wide expression profiling identified BrlA-dependent genes in P. decumbens, including genes previously reported to be involved in conidiation as well as previously reported chitin synthase genes and acid protease gene (pepB). The expression levels of seven secondary metabolism gene clusters (from a total of 28 clusters) were drastically regulated in the brlA deletion strain, including a downregulated cluster putatively involved in the biosynthesis of the mycotoxins roquefortine C and meleagrin. In addition, the expression levels of most cellulase genes were upregulated in the brlA deletion strain detected by real-time quantitative PCR. The brlA deletion strain also exhibited an 89.1 % increase in cellulase activity compared with the wild-type strain. The results showed that BrlA in P. decumbens not only has a key role in regulating conidiation, but it also regulates secondary metabolism extensively as well as the expression of cellulase genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad A, Fernández-Molina JV, Bikandi J, Ramírez A, Margareto J, Sendino J, Hernando FL, Pontón J, Garaizar J, Rementeria A (2010) What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 27:155–182

    Article  PubMed  Google Scholar 

  • Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    PubMed  CAS  Google Scholar 

  • Andrianopoulos A, Timberlake WE (1994) The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14:2503–2515

    Article  PubMed  CAS  Google Scholar 

  • Arratia-Quijada J, Sánchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Baba S, Kinoshita H, Nihira T (2012) Identification and characterization of Penicillium citrinum VeA and LaeA as global regulators for ML-236B production. Curr Genet 58:1–11

    Article  PubMed  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  PubMed  CAS  Google Scholar 

  • Busby TM, Miller KY, Miller BL (1996) Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143:155–163

    PubMed  CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  PubMed  CAS  Google Scholar 

  • Chang YC, Timberlake WE (1993) Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 133:29–38

    PubMed  CAS  Google Scholar 

  • Chang MH, Chae KS, Han DM, Jahng KY (2004) The GanB Gα-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF (2012a) Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 116:298–307

    Article  PubMed  CAS  Google Scholar 

  • Chang PK, Scharfenstein LL, Mack B, Ehrlich KC (2012b) Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Appl Environ Microbiol 78:7557–7563

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cooper CR, Vanittanakom N (2008) Insights into the pathogenicity of Penicillium marneffei. Future Microbiol 3:43–55

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stålbrand H, de Vries RP (2009) Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol 46:S161–S169

    Article  PubMed  CAS  Google Scholar 

  • Dagenais TR, Giles SS, Aimanianda V, Latgé JP, Hull CM, Keller NP (2010) Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect Immun 78:823–829

    Article  PubMed  CAS  Google Scholar 

  • D’Souza CA, Lee BN, Adams TH (2001) Characterization of the role of the FluG protein in asexual development of Aspergillus nidulans. Genetics 158:1027–1036

    PubMed  Google Scholar 

  • Emri T, Szilágyi M, László K, M-Hamvas M, Pócsi I (2009) PepJ is a new extracellular proteinase of Aspergillus nidulans. Folia Microbiol (Praha) 54:105–109

    Article  CAS  Google Scholar 

  • Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu JH, Espeso EA, Ugalde U (2008) Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot Cell 7:38–48

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Yamada K, Deoka K, Yamashita S, Ohta A, Horiuchi H (2009) Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot Cell 8:45–956

    Article  Google Scholar 

  • García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  PubMed  Google Scholar 

  • Girardin H, Paris S, Rault J, Bellon-Fontaine MN, Latgé JP (1999) The role of the rodlet structure on the physicochemical properties of Aspergillus conidia. Lett Appl Microbiol 29:364–369

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez S, Fierro F, Casqueiro J, Martín JF (1999) Gene organization and plasticity of the β-lactam genes in different filamentous fungi. Antoine van Leeuwenhoek 75:81–94

    Article  Google Scholar 

  • Ilmén M, Thrane C, Penttilä M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  Google Scholar 

  • Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen H, Kristian A, Krogh BR, Olsson L (2005) Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 36:42–48

    Article  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553

    Article  PubMed  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Article  PubMed  CAS  Google Scholar 

  • Knutsen AP, Hutcheson PS, Slavin RG, Kurup VP (2004) IgE antibody to Aspergillus fumigatus recombinant allergens in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 59:198–203

    Article  PubMed  CAS  Google Scholar 

  • Koukaki M, Giannoutsou E, Karagouni A, Diallinas G (2003) A novel improved method for Aspergillus nidulans transformation. J Microbiol Methods 55:687–695

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH (2010a) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219

    Article  PubMed  CAS  Google Scholar 

  • Kwon NJ, Shin KS, Yu JH (2010b) Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol 47:981–993

    Article  PubMed  CAS  Google Scholar 

  • Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz E-H, Giardina T (2011) GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microb Cell Fact 10:20

    Article  PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1996) fluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA β activation. EMBO J 15:299–309

    PubMed  CAS  Google Scholar 

  • Lee JI, Choi JH, Park BC, Park YH, Lee MY, Park HM, Maeng PJ (2004) Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 41:635–646

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y (2013a) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8:e55185

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Wang T, Zhou Z, Qu Y (2013b) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    PubMed  CAS  Google Scholar 

  • López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65

    Article  PubMed  Google Scholar 

  • Masayuki M, Osamu Y, Katsuya G (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183

    Article  Google Scholar 

  • Mayorga ME, Timberlake WE (1990) Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics 126:73–79

    PubMed  CAS  Google Scholar 

  • McGuire SL, Roe DL, Carter BW, Carter RL, Grace SP, Hays PL, Lang GA, Mamaril JL, McElvaine AT, Payne AM, Schrader MD, Wahrle SE, Young CD (2000) Extragenic suppressors of the nimX2(cdc2) mutation of Aspergillus nidulans affect nuclear division, septation and conidiation. Genetics 156:1573–1584

    PubMed  CAS  Google Scholar 

  • Melin P, Schnürer J, Wagner EG (2003) Characterization of phiA, a gene essential for phialide development in Aspergillus nidulans. Fungal Genet Biol 40:234–241

    Article  PubMed  CAS  Google Scholar 

  • Mellado E, Aufauvre-Brown A, Gow NA, Holden DW (1996) The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol 20:667–679

    Article  PubMed  CAS  Google Scholar 

  • Mellado E, Dubreucq G, Mol P, Sarfati J, Paris S, Diaquin M, Holden DW, Rodriguez-Tudela JL, Latgé JP (2003) Cell wall biogenesis in a double chitin synthase mutant (chsG -/chsE -) of Aspergillus fumigatus. Fungal Genet Biol 38:98–109

    Article  PubMed  CAS  Google Scholar 

  • Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377

    Article  PubMed  CAS  Google Scholar 

  • Mirabito PM, Adams TH, Timberlake WE (1989) Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57:859–868

    Article  PubMed  CAS  Google Scholar 

  • Molnár Z, Mészáros E, Szilágyi Z, Rosén S, Emri T (2004) Influence of fadAG203R and ⊿flbA mutations on morphology and physiology of submerged Aspergillus nidulans cultures. Appl Biochem Biotechnol 118:349–360

    Article  PubMed  Google Scholar 

  • Moralejo FJ, Cardoza RE, Gutierrez S, Lombraña M, Fierro F, Martín JF (2002) Silencing of the aspergillopepsin B (pepB) gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production. Appl Environ Microbiol 68:3550–3559

    Article  PubMed  CAS  Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860

    Article  PubMed  Google Scholar 

  • Navarro RE, Stringer MA, Hansberg W, Timberlake WE, Aguirre J (1996) catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr Genet 29:352–359

    PubMed  CAS  Google Scholar 

  • Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2:e970

    Article  PubMed  Google Scholar 

  • Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y (2010) Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae. Fungal Genet Biol 47:10–18

    Article  PubMed  CAS  Google Scholar 

  • Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9:177

    Article  PubMed  Google Scholar 

  • Polonelli L, Morace G, Rosa R, Castagnola M, Frisvad JC (1987) Antigenic characterization of Penicillium camemberti and related common cheese contaminants. Appl Environ Microbiol 53:872–878

    PubMed  CAS  Google Scholar 

  • Prade RA, Timberlake WE (1993) The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J 12:2439–2447

    PubMed  CAS  Google Scholar 

  • Ravanal MC, Callegari E, Eyzaguirre J (2010) Novel bifunctional α-l-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum. Appl Environ Microbiol 76:5247–5253

    Article  PubMed  CAS  Google Scholar 

  • Sahare P, Singh R, Laxman RS, Rao M (2012) Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl Biochem Biotechnol 168:1806–1819

    Article  PubMed  CAS  Google Scholar 

  • Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6:e1001226

    Article  PubMed  Google Scholar 

  • Schier N, Liese R, Fischer R (2001) A Pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation. Mol Cell Biol 21:4075–4088

    Article  PubMed  CAS  Google Scholar 

  • Seo JA, Guan Y, Yu JH (2003) Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics 165:1083–1093

    PubMed  CAS  Google Scholar 

  • Seo JA, Guan Y, Yu JH (2006) FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD (2012) Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol 85:252–270

    Article  PubMed  CAS  Google Scholar 

  • Sigl C, Haas H, Specht T, Pfaller K, Kürnsteiner H, Zadra I (2011) Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl Environ Microbiol 77:972–982

    Article  PubMed  CAS  Google Scholar 

  • Singhvi MS, Adsul MG, Gokhale DV (2011) Comparative production of cellulases by mutants of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose. Bioresour Technol 102:6569–6572

    Article  PubMed  CAS  Google Scholar 

  • Soid-Raggi G, Sánchez O, Aguirre J (2006) TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Mol Microbiol 59:854–869

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stöffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  PubMed  CAS  Google Scholar 

  • Stringer MA, Timberlake WE (1995) dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Mol Microbiol 16:33–44

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Glass NL (2011) Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS ONE 6:e25654

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Li JP, Wang AQ, Tang GM, Wang HM (2004) Construction and functional analysis of the pepB gene disruptant in Aspergillus niger. Wei Sheng Wu Xue Bao 44:766–770

    PubMed  CAS  Google Scholar 

  • Sun X, Liu Z, Qu Y, Li X (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  PubMed  CAS  Google Scholar 

  • Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T (2010) The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J Appl Microbiol 109:1498–1508

    PubMed  Google Scholar 

  • Szilágyi M, Kwon NJ, Bakti F, M-Hamvas M, Jámbrik K, Park H, Pócsi I, Yu JH, Emri T (2011) Extracellular proteinase formation in carbon starving Aspergillus nidulans cultures — physiological function and regulation. J Basic Microbiol 51:625–634

    Article  PubMed  Google Scholar 

  • ‘t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Yu JH (2011) AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology 157:313–326

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Greenhalgh JR, Hynes MJ, Andrianopoulos A (2003) TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol Microbiol 48:85–94

    Article  PubMed  CAS  Google Scholar 

  • Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC (2009) Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot Cell 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • van den Hombergh JP, Sollewijn Gelpke MD, van de Vondervoort PJ, Buxton FP, Visser J (1997) Disruption of three acid proteases in Aspergillus niger—effects on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J Biochem 247:605–613

    Article  PubMed  Google Scholar 

  • Wadman MW, de Vries RP, Kalkhove SI, Veldink GA, Vliegenthart JF (2009) Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol 9:59

    Article  PubMed  Google Scholar 

  • Wiebe MC, Robson GD, Trinci APJ (1990) Edifenphos (Hinosan) reduces hyphal extension, hyphal growth unit length and phosphatidylcholine content of Fusarium graminearum A3/5, but has no effect on specific growth rate. J Gen Microbiol 136:979–984

    Article  CAS  Google Scholar 

  • Wieser J, Lee BN, Fondon JW 3rd, Adams TH (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27:62–69

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Yamazaki D, Takaya N, Takagi M, Ohta A, Horiuchi H (2007) A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans. Curr Genet 51:89–98

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li L, Li X, Shao Y, Chen F (2012) mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol 116:225–233

    Article  PubMed  CAS  Google Scholar 

  • Yu JH, Rosén S, Adams TH (1999) Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151:97–105

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the grants from National Basic Research Program of China (Grant no. 2011CB707403), National Natural Sciences Foundation of China (Grant no. 31030001 and 31370086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqi Qin or Yinbo Qu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2080 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Bao, L., Gao, M. et al. Penicillium decumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes. Appl Microbiol Biotechnol 97, 10453–10467 (2013). https://doi.org/10.1007/s00253-013-5273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5273-3

Keywords

Navigation