Skip to main content
Log in

Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2-Oxoglutarate (2OG) is a metabolite from the highly conserved Krebs cycle and not only plays a critical role in metabolism but also acts as a signaling molecule in a variety of organisms. Environmental inorganic nitrogen is reduced to ammonium by microorganisms, whose metabolic pathways involve the conversion of 2OG to glutamate and glutamine. Tracking of 2OG in real time would be useful for studies on cell metabolism and signal transduction. Here, we developed a genetically encoded 2OG biosensor based on fluorescent resonance energy transfer by inserting the functional 2OG-binding domain GAF of the NifA protein between the fluorescence resonance energy transfer (FRET) pair YFP/CFP. The dynamic range of the sensors is 100 μM to 10 mM, which appeared identical to the physiological range observed in E. coli. We optimized the peptide lengths of the binding domain to obtain a sensor with a maximal ratio change of 0.95 upon 2OG binding and demonstrated the feasibility of this sensor for the visualization of metabolites both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansbacher T, Srivastava HK, Stein T, Baer R, Merkx M, Shurki A (2012) Calculation of transition dipole moment in fluorescent proteins—towards efficient energy transfer. Phys Chem Chem Phys 14(12):4109–4117. doi:10.1039/c2cp23351g

    Article  PubMed  CAS  Google Scholar 

  • Araujo WL, Tohge T, Nunes-Nesi A, Daloso DM, Nimick M, Krahnert I, Bunik VI, Moorhead GB, Fernie AR (2012) Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. Front Plant Sci 3:114. doi:10.3389/fpls.2012.00114

    PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22(12):458–459. doi:10.1016/S0968-0004(97)01148-1

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599. doi:10.1038/nchembio.186

    Article  PubMed  CAS  Google Scholar 

  • Bogner M, Ludewig U (2007) Visualization of arginine influx into plant cells using a specific FRET-sensor. J Fluoresc 17(4):350–360. doi:10.1007/s10895-007-0192-2

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182(15):4129–4136. doi:10.1128/JB.182.15.4129-4136.2000

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Duggan C, Ganley JP, Kooragayala LM, Reden TB, Texada DE, Langford MP (2004) Expression of enterovirus 70 capsid protein VP1 in Escherichia coli. Protein Expr Purif 37(2):426–433. doi:10.1016/j.pep.2004.06.027

    Article  PubMed  CAS  Google Scholar 

  • Cicchetti G, Biernacki M, Farquharson J, Allen PG (2004) A ratiometric expressible FRET sensor for phosphoinositides displays a signal change in highly dynamic membrane structures in fibroblasts. Biochemistry 43(7):1939–1949. doi:10.1021/bi035480w

    Article  PubMed  CAS  Google Scholar 

  • Depry C, Mehta S, Zhang J (2013) Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors. Pflugers Arch 465(3):373–381. doi:10.1007/s00424-012-1175-y

    Article  PubMed  CAS  Google Scholar 

  • Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14(9):2304–2314. doi:10.1110/ps.051508105

    Article  PubMed  CAS  Google Scholar 

  • DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518. doi:10.1073/pnas.0405973101

    Article  PubMed  CAS  Google Scholar 

  • Dulla C, Tani H, Okumoto S, Frommer WB, Reimer RJ, Huguenard JR (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 168(2):306–319. doi:10.1016/j.jneumeth.2007.10.017

    Article  PubMed  CAS  Google Scholar 

  • Ewald JC, Reich S, Baumann S, Frommer WB, Zamboni N (2011) Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One 6(12):e28245. doi:10.1371/journal.pone.0028245

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99(15):9846–9851. doi:10.1073/pnas.142089199

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278(21):19127–19133. doi:10.1074/jbc.M301333200

    Article  PubMed  CAS  Google Scholar 

  • Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB (2005) Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 33(Pt 1):287–290. doi:10.1042/BST0330287

    PubMed  CAS  Google Scholar 

  • Fomenko OZ, Ushakova HO, Piierzhynovs'kyi SH (2011) Astroglia proteins in the rat brain in experimental chronic hepatitis and 2-oxoglutarate effect. Ukr Biokhim Zh 83(1):69–76

    PubMed  CAS  Google Scholar 

  • Gruenwald K, Holland JT, Stromberg V, Ahmad A, Watcharakichkorn D, Okumoto S (2012) Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors. PLoS One 7(6):e38591. doi:10.1371/journal.pone.0038591

    Article  PubMed  CAS  Google Scholar 

  • Ha JS, Song JJ, Lee YM, Kim SJ, Sohn JH, Shin CS, Lee SG (2007) Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 73(22):7408–7414. doi:10.1128/AEM.01080-07

    Article  PubMed  CAS  Google Scholar 

  • Harrison AP, Pierzynowski SG (2008) Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art—review article. J Physiol Pharmacol 59(Suppl 1):91–106

    PubMed  Google Scholar 

  • Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105(11):4411–4416. doi:10.1073/pnas.0712008105

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19(20):5288–5299. doi:10.1093/emboj/19.20.5288

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci U S A 98(5):2437–2442. doi:10.1073/pnas.051631298

    Article  PubMed  CAS  Google Scholar 

  • Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106(37):15651–15656. doi:10.1073/pnas.0904764106

    Article  PubMed  CAS  Google Scholar 

  • Iqbal A, Arslan S, Okumus B, Wilson TJ, Giraud G, Norman DG, Ha T, Lilley DM (2008) Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. Proc Natl Acad Sci U S A 105(32):11176–11181. doi:10.1073/pnas.0801707105

    Article  PubMed  CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10(5):409–416. doi:10.1016/j.cbpa.2006.08.021

    Article  PubMed  CAS  Google Scholar 

  • John SA, Ottolia M, Weiss JN, Ribalet B (2008) Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflugers Arch 456(2):307–322. doi:10.1007/s00424-007-0395-z

    Article  PubMed  CAS  Google Scholar 

  • Kaper T, Lager I, Looger LL, Chermak D, Frommer WB (2008) Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol Biofuels 1(1):11. doi:10.1186/1754-6834-1-11

    Article  PubMed  Google Scholar 

  • Knetsch ML, Tsiavaliaris G, Zimmermann S, Ruhl U, Manstein DJ (2002) Expression vectors for studying cytoskeletal proteins in Dictyostelium discoideum. J Muscle Res Cell Motil 23(7–8):605–611

    Article  PubMed  CAS  Google Scholar 

  • Lager I, Fehr M, Frommer WB, Lalonde S (2003) Development of a fluorescent nanosensor for ribose. FEBS Lett 553(1–2):85–89. doi:10.1016/S0014-5793(03)00976-1

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377. doi:10.1146/annurev.micro.61.080706.093409

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Argudo I, Little R, Dixon R (2004) Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 52(6):1731–1744. doi:10.1111/j.1365-2958.2004.04089.x

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R (2005) Nitrogen fixation: key genetic regulatory mechanisms. Biochem Soc Trans 33(Pt 1):152–156. doi:10.1042/BST0330152

    PubMed  CAS  Google Scholar 

  • Miranda JG, Weaver AL, Qin Y, Park JG, Stoddard CI, Lin MZ, Palmer AE (2012) New alternately colored FRET sensors for simultaneous monitoring of Zn(2)(+) in multiple cellular locations. PLoS One 7(11):e49371. doi:10.1371/journal.pone.0049371

    Article  PubMed  CAS  Google Scholar 

  • Morett E, Segovia L (1993) The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175(19):6067–6074

    PubMed  CAS  Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101(29):10554–10559. doi:10.1073/pnas.0400417101

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3(1):23–25. doi:10.1038/nmeth816

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Hwa T, Lenz P, Yan D (2010) Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli. J Mol Biol 404:522–536. doi:10.1016/j.jmb.2010.09.046

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102(24):8740–8745. doi:10.1073/pnas.0503274102

    Article  PubMed  CAS  Google Scholar 

  • Partridge JD, Scott C, Tang Y, Poole RK, Green J (2006) Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281(38):27806–27815. doi:10.1074/jbc.M603450200

    Article  PubMed  CAS  Google Scholar 

  • Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414. doi:10.1016/j.tibs.2007.08.003

    Article  PubMed  CAS  Google Scholar 

  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5(12):1176–1180. doi:10.1038/sj.embor.7400290

    Article  PubMed  CAS  Google Scholar 

  • Pos KM, Dimroth P, Bott M (1998) The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J Bacteriol 180(16):4160–4165

    PubMed  CAS  Google Scholar 

  • Rajamani S, Zhu J, Pei D, Sayre R (2007) A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds. Biochemistry 46(13):3990–3997. doi:10.1021/bi602479e

    Article  PubMed  CAS  Google Scholar 

  • Salonikidis PS, Niebert M, Ullrich T, Bao G, Zeug A, Richter DW (2011) An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions. J Biol Chem 286(26):23419–23431. doi:10.1074/jbc.M111.236869

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Ueda Y, Umezawa Y (2006) Imaging diacylglycerol dynamics at organelle membranes. Nat Methods 3(10):797–799. doi:10.1038/nmeth930

    Article  PubMed  CAS  Google Scholar 

  • Senior PJ (1975) Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol 123(2):407–418

    PubMed  CAS  Google Scholar 

  • Seol W, Shatkin AJ (1991) Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc Natl Acad Sci U S A 88(9):3802–3806

    Article  PubMed  CAS  Google Scholar 

  • Tanimura A, Morita T, Nezu A, Shitara A, Hashimoto N, Tojyo Y (2009) Use of fluorescence resonance energy transfer-based biosensors for the quantitative analysis of inositol 1,4,5-trisphosphate dynamics in calcium oscillations. J Biol Chem 284(13):8910–8917. doi:10.1074/jbc.M805865200

    Article  PubMed  CAS  Google Scholar 

  • Teixeira PF, Selao TT, Henriksson V, Wang H, Noren A, Nordlund S (2010) Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Res Microbiol 161(8):651–659. doi:10.1016/j.resmic.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Bogner M, Stierhof Y-D, Ludewig U (2010) H+-independent glutamine transport in plant root tips. Transport 5

  • Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S, Fujiki Y, Sakai Y (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30(15):3758–3766. doi:10.1128/MCB.00121-10

    Article  PubMed  CAS  Google Scholar 

  • Zhao MX, Jiang YL, He YX, Chen YF, Teng YB, Chen Y, Zhang CC, Zhou CZ (2010) Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc Natl Acad Sci U S A 107(28):12487–12492. doi:10.1073/pnas.1001556107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the China NSF (21276079), SRFDP (no. 20120074110009), the Key Grant Project (no. 313019) of the Chinese Ministry of Education, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Ce Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Wei, ZH. & Ye, BC. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor. Appl Microbiol Biotechnol 97, 8307–8316 (2013). https://doi.org/10.1007/s00253-013-5121-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5121-5

Keywords

Navigation