Skip to main content
Log in

Cloning, expression, and characterization of the β-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Previously, from the human intestinal flora we isolated the bacterial strain Bacteroides uniformis ZL1, which could convert secoisolariciresinol diglucoside (SDG) to its aglycone secoisolariciresinol (SECO) in vivo. In this study, 24 putative β-glucosidase genes were screened from the genome of B. uniformis ATCC 8492, which were used as templates to design PCR primers for the target genes in B. uniformis ZL1. Fifteen genes (bgl1bgl15) were amplified from strain ZL1, and among them we identified bgl8 as the gene encoding the SDG-hydrolyzing β-glucosidase. We sequenced the bgl8 gene, cloned it into the expression vector and then transformed Escherichia coli to construct the recombinant bacteria that could synthesize the target β-glucosidase (BuBGL8). We purified and characterized BuBGL8, which showed maximal activity and stability under the culture conditions of pH 6.0 and 30 °C. SDG (2.0 mg/ml) was converted to SECO by both the purified BuBGL8 (0.035 mg/ml) and crude enzyme extract (0.23 mg crude protein/ml) with the efficiency of more than 90 % after 90 min at the reaction conditions. This is, to our knowledge, the first report of using recombinant bacteria to synthesize the SDG-hydrolyzing β-glucosidase, which could be used to produce SECO from SDG conveniently and highly efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida MS, Cabral KMS, Kurtenbach E, Almeida FCL, Valente AP (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 315(4):749–757

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Banerjee A, Arora N, Murty U (2009) Structural model of the Plasmodium falciparum thioredoxin reductase: a novel target for antimalarial drugs. J Vector Borne Dis 46(3):171–183

    PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22(4):375–407

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y (1998) Predicting function: from genes to genomes and back. J Mol Biol 283(4):707–725

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Niepel M, Sorger PK (2010) Classic and contemporary approaches to modeling biochemical reactions. Genes Dev 24(17):1861–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clavel T, Henderson G, Engst W, Doré J, Blaut M (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55(3):471–478

    Article  CAS  PubMed  Google Scholar 

  • Clavel T, Lippman R, Gavini F, Doré J, Blaut M (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30(1):16–26

    CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O (2000) Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. J Biol Chem 275(7):4973–4980

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29(1):75–83

    Article  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    Article  CAS  PubMed  Google Scholar 

  • Faber K (2011) Introduction and background information. In: Faber K (ed) Biotransformations in organic chemistry, 6th edn. Springer, Berlin, pp 3–10

    Chapter  Google Scholar 

  • Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70(8):4499–4504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Se D, Wilkins MR, Appel RD, Bairoch A (2011) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Graciano L, Corrêa J, Gandra R, Seixas F, Kadowaki M, Sampaio S, da Conceição SJ, Osaku C, Rd S (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-Xylosidase I. World J Microbiol Biotechnol 28(9):2879–2888

    Article  CAS  PubMed  Google Scholar 

  • Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, Dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Meth 5(2):135–146

    Google Scholar 

  • Hou J, Xue J, Wang C, Liu L, Zhang D, Wang Z, Li W, Zheng Y, Sung C (2012) Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. World J Microbiol Biotechnol 28(4):1807–1811

    Article  CAS  PubMed  Google Scholar 

  • Iguchi A, Osawa R, Kawano J, Shimizu A, Terajima J, Watanabe H (2002) Effects of repeated subculturing and prolonged storage at room temperature of enterohemorrhagic Escherichia coli O157:H7 on pulsed-field gel electrophoresis profiles. J Clin Microbiol 40(8):3079–3081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imanaka T, Aiba S (1981) A perspective on the application of genetic engineering: stability of recombinant plasmid. Ann N Y Acad Sci 369(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Jabbour D, Klippel B, Antranikian G (2012) A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Appl Microbiol Biotechnol 93(5):1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Kalyani D, Lee K-M, Tiwari M, Ramachandran P, Kim H, Kim I-W, Jeya M, Lee J-K (2012) Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Appl Microbiol Biotechnol 94(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Kaul P, Asano Y (2012) Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 5(1):18–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ketudat Cairns J, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67(20):3389–3405

    Article  CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU (1999) Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert P, Korczak BM (2006) Prediction of whole-genome DNA–DNA similarity, determination of G + C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152(9):2537–2548

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li MX, Zhu HY, Yang DH, Ma XQ, Wang CZ, Cai SQ, Liu GR, Ku BS, Liu SL (2012) Production of secoisolariciresinol from defatted flaxseed by bacterial biotransformation. J Appl Microbiol 113(6):1352–1361

    Article  CAS  PubMed  Google Scholar 

  • Li YK, Chir J, Chen FY (2001) Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247. Biochem J 355(3):835–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linn S (2009) Strategies and considerations for protein purifications. Methods Enzymol 463:9–19

    Article  CAS  PubMed  Google Scholar 

  • Love DR, Streiff MB (1987) Molecular cloning of a β-glucosidase gene from an extremely thermophilic anaerobe in E. coli and B. subtilis. Nat Biotech 5(4):384–387

    Article  CAS  Google Scholar 

  • Meagher LP, Beecher GR (2000) Assessment of data on the lignan content of foods. J Food Compos Anal 13(6):935–947

    Article  CAS  Google Scholar 

  • Michaelis L, Menten ML, Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39):8264–8269

    Article  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012) Identification, cloning, and characterization of β-glucosidase from Ustilago esculenta. Appl Microbiol Biotechnol 93(5):1989–1998

    Article  CAS  PubMed  Google Scholar 

  • Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Cairns JRK (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol 6:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8(10):785–786

    Article  CAS  Google Scholar 

  • Pozzo T, Pasten JL, Karlsson EN, Logan DT (2010) Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol 397(3):724–739

    Article  CAS  PubMed  Google Scholar 

  • Quan L-H, Min J-W, Yang D-U, Kim Y-J, Yang D-C (2012) Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol 94(2):377–384

    Article  CAS  PubMed  Google Scholar 

  • Rabhi-Essafi I, Sadok A, Khalaf N, Fathallah DM (2007) A strategy for high-level expression of soluble and functional human interferon α as a GST-fusion protein in E. coli. Protein Eng Des Sel 20(5):201–209

    Article  CAS  PubMed  Google Scholar 

  • Raffaelli B, Hoikkala A, Leppälä E, Wähälä K (2002) Enterolignans. J Chromatogr B 777(1–2):29–43

    Article  CAS  Google Scholar 

  • Reed MC, Lieb A, Nijhout HF (2010) The biological significance of substrate inhibition: a mechanism with diverse functions. BioEssays 32(5):422–429

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Romeu A (1996) A sequence analysis of the β-glucosidase sub-family B. FEBS Lett 378(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Purification of maltose-binding fusion proteins by affinity chromatography on amylose resin. In: Sambrook J (ed) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 15.40–15.43

    Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-Model: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38(suppl 1):D161–D166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith C (2005) Striving for purity: advances in protein purification. Nat Meth 2(1):71–77

    CAS  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  • von der Lieth CW, Lutteke T, Frank M (2006) The role of informatics in glycobiology research with special emphasis on automatic interpretation of MS spectra. Biochim Biophys Acta 1760(4):568–577

    Article  PubMed  Google Scholar 

  • Wahler D, Reymond J-L (2001) High-throughput screening for biocatalysts. Curr Opin Biotechnol 12(6):535–544

    Article  CAS  PubMed  Google Scholar 

  • Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, Tang J, Zhang YN, Ma M, Cai SQ, Ku BS, Liu SL (2010) Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol 10:115

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang L-Q (2002) Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B 777(1–2):289–309

    CAS  Google Scholar 

  • Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull 48(11):1606–1610

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17(2):310–316

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Zhou W, Li X, Feng M, Zhou P (2008) Purification method improvement and characterization of a novel ginsenoside-hydrolyzing beta-glucosidase from Paecilomyces Bainier sp. 229. Biosci Biotechnol Biochem 72(2):352–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhong Y, Sun X, Ma Y (2009) Purification and characterization of SDG-β-D-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Aspergillus oryzae. Process Biochem 44(6):607–611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Qi-De Han for support and encouragement throughout this project. This work was supported by grants from the National Natural Science Foundation of China (No. 21072012) and National Science and Technology Major Projects for Major New Drugs Innovation and Development (No.2011ZX09102-011-06) of China; and Doctoral Fund of Ministry of Education of China (No. 20100001110059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D.-H. Yang or S.-L. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, YL., Yang, DH., Zhang, YT. et al. Cloning, expression, and characterization of the β-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1. Appl Microbiol Biotechnol 98, 2519–2531 (2014). https://doi.org/10.1007/s00253-013-5111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5111-7

Keywords

Navigation