Skip to main content
Log in

Characterization of novel mutants with an altered gibberellin spectrum in comparison to different wild-type strains of Fusarium fujikuroi

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDESPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albermann S, Linnemannstöns P, Tudzynski B (2013) Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechn 97(7):2979–2995

    Google Scholar 

  • Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanolproduction. Metab Eng 10:305–311

    Article  PubMed  CAS  Google Scholar 

  • Avalos J, Cerdá-Olmedo E (1986) Chemical modification of carotenogenesis in Gibberella fujikuroi. Phytochemistry 25:1837–1841

    Article  CAS  Google Scholar 

  • Bacon CW, Porte JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    PubMed  CAS  Google Scholar 

  • Barrero AF, Sánchez JF, Oltra JE, Tamayo N, Cerdá-Olmedo E (1991) Fusarin C and 8Z-Fusarin C from Gibberella fujikuroi. Phytochemistry 30:2259–2263

    Article  CAS  Google Scholar 

  • Bearder JR, MacMillan J, Wels CM, Chaffey MB, Phinney BO (1974) Position of the metabolic block for gibberellin biosynthesis in mutant B1-41a of Gibberella fujikuroi. Phytochemistry 13:911–917

    Article  CAS  Google Scholar 

  • Bearder JR (1983) In vivo diterpenoid biosynthesis in Gibberella fujikuroi: the pathway after ent-kaurene. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York

    Google Scholar 

  • Bhattacharya A, Kourmpetli S, Ward DA, Thomas SG, Gong F, Powers SJ, Carrera E, Taylor B, de Caceres N, Gonzalez F, Tudzynski B, Phillips AL, Davey MR, Hedden P (2012) Characterisation of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilisation for enhancing plant growth. Plant Physiol 160:837–845

    Article  PubMed  CAS  Google Scholar 

  • Binks R, MacMillan J, Pryce R (1969) Combined gas chromatography–mass spectrometry of the methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8:271–284

    Article  CAS  Google Scholar 

  • Birch AJ, Richards RW, Smith H (1958) The biosynthesis of gibberellic acid. Proc Chem Soc 1:192–193

    Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    Article  PubMed  Google Scholar 

  • Brückner B, Blechschmidt D (1991) The gibberellin fermentation. Crit Rev Biotechn 11:163–192

    Article  Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Crawford JM, Vagstad AL, Ehrlich KC, Udwary DW, Townsend CA (2008) Acyl-carrier protein-phosphopantetheinyltransferase partnerships in fungal fatty acid synthases. Chembiochem 9:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Darken MA, Jensen AAL, Shu P (1959) Production of gibberellic acid by fermentation. Appl Microbiol 7:301–306

    PubMed  CAS  Google Scholar 

  • Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM (2000) Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 66:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Geissman TA, Verbiscar AJ, Phinney BO, Cragg G (1966) Studies on the biosynthesis of gibberellins from (−)-kaurenoic acid in cultures of Gibberella fujikuroi. Phytochemistry 5:933–947

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11:130–137

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin Biosynthesis in Plants and Fungi: A Case of Convergent Evolution? J Plant Growth Regul 20:319–331

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  PubMed  CAS  Google Scholar 

  • Hollmann D, Switalski J, Geipel S, Onken U (1995) Extractive fermentation of gibberellic acid by Gibberella fujikuroi. J Ferment Bioeng 79:594–600

    Article  CAS  Google Scholar 

  • Homann V, Mende K, Arntz C, Ilardi V, Macino G, Morelli G, Böse G, Tudzynski B (1996) The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet 30:232–239

    Article  PubMed  CAS  Google Scholar 

  • Kawaide H, Imai R, Sassa T, Kamiya Y (1997) ent-Kaurene synthase from the fungus Phaeosphaeria sp. L487—cDNA isolation, characterization, and bacterial expression of a bifunctional diterpenecyclase in fungal gibberellin biosynthesis. J Biol Chem 272:21706–21712

    Article  PubMed  CAS  Google Scholar 

  • Kjær D, Kjær A, Pederson C, Bu’Lock JD, Smith JR (1971) Bikaverin and nor-bikaverin, benzoxanthentrione pigments of Gibberella fujikuroi. J Chem Soc Perkin 16:2792–2797

    Google Scholar 

  • Kleigrewe K, Aydin F, Hogrefe K, Piecuch P, Bergander K, Wuerthwein EU, Humpf HU (2012) Structure elucidation of new fusarins revealing insights in the rearrangement mechanisms of the Fusarium mycotoxin fusarin C. J Agric Food Chem 60:5497–5505

    Article  PubMed  CAS  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily—the phosphopantetheinyltransferases. Chem Biol 3:923–936

    Article  PubMed  CAS  Google Scholar 

  • Lange T, Hedden P, Graebe JE (1994) Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA 91:8552–8556

    Article  PubMed  CAS  Google Scholar 

  • Linnemannstöns P, Prado MM, Fernandez-Martin R, Tudzynski B, Avalos J (2002a) A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Genet Genomics 267:593–602

    Article  PubMed  Google Scholar 

  • Linnemannstöns P, Schulte J, del Mar Prado M, Proctor RH, Avalos J, Tudzynski B (2002b) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:143–148

    Article  Google Scholar 

  • MacMillan J, Pryce R, Eglington G, McCormick A (1967) Identification of gibberellins in crude extracts by combined gas chromatography–mass spectrometry. Tetrahedron Lett 24:2241–2243

    Article  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442

    Article  Google Scholar 

  • Malonek S, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005) Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl Environ Microbiol 71:6014–6025

    Article  PubMed  CAS  Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) Molecular characterization of the geranylgeranyldiphosphate synthase gene of Gibberella fujikuroi. Mol Gen Genet 255:96–105

    Article  PubMed  CAS  Google Scholar 

  • Mihlan M, Homann V, Liu TW, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991

    Article  PubMed  CAS  Google Scholar 

  • Pérez FJ, Vecchiola A, Pinto M, Agosin E (1996) Gibberellic acid decomposition and its loss of biological activity in aqueous solutions. Phytochemistry 41:675–679

    Article  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Rademacher W (1997) Gibberellins. In: Anke T (ed) Fungal Biotechn. Chapman and Hall, London, pp 193–205

    Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci USA 98:5838–5843

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sawada K (1917) Contributions on Formosan fungi. Trans Nat Hist Soc Formosa 7:131–133

    Google Scholar 

  • Schönig B, Brown DW, Oeser B, Tudzynski B (2008) Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights in Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. Eukaryot Cell 7:1831–1846

    Article  PubMed  Google Scholar 

  • Sin G, Ödman P, Petersen N, Lantz AE, Gernaey KV (2008) Matrix notation for efficient development of first-principles models within PAT applications: integrated modeling of antibiotic production with Streptomyces coelicolor. Biotechnol Bioeng 101:153–171

    Article  PubMed  CAS  Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi Perithecia. Appl Environ Microbiol 78:4468–4480

    Article  PubMed  CAS  Google Scholar 

  • Sun SK, Snyder WC (1981) The bakanae disease of the rice plant. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Pennsylvania State University Press, University Park, pp 104–113

    Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–1518

    PubMed  CAS  Google Scholar 

  • Troncoso C, González X, Bömke C, Tudzynski B, Gong F, Hedden P, Rojas MC (2010) Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. Phytochemistry 71:1322–1331

    Article  PubMed  CAS  Google Scholar 

  • Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Bio 45:1393–1403

    Article  CAS  Google Scholar 

  • Tudzynski B, Hölter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Kawaide H, Kamiya Y (1998) Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyldiphosphate synthase gene. Curr Genet 34:234–240

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl Microbiol Biotechnol 52:298–310

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal phytohormones. In: Osiewacz HD (ed) The Mycota, vol 10. Industrial application. Springer, Berlin

    Google Scholar 

  • Tudzynski B, Rojas MC, Gaskin P, Hedden P (2002) The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J Biol Chem 277:21246–21253

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Mihlan M, Rojas MC, Linnemannstöns P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Schmeinck A, Mos M, Morozov IY, Caddick MX, Tudzynski B (2010) The bZIP transcription factor MeaB mediates nitrogen metabolite repression at specific loci. Eukaryot Cell 9:1588–1601

    Article  PubMed  CAS  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    Article  PubMed  CAS  Google Scholar 

  • Wiemann P, Albermann S, Niehaus EM, Studt L, von Bargen KW, Brock NL, Humpf HU, Dickschat JS, Tudzynski B (2012) The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development. Secondary metabolism and pathogenicity. PLoS One 7:e37519

    Article  PubMed  CAS  Google Scholar 

  • Woitek S, Unkles SE, Kinghorn JR, Tudzynski B (1997) 3-Hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterization. Curr Genet 31:38–47

    Article  PubMed  CAS  Google Scholar 

  • Yabuta T (1935) Biochemistry of the bakanae fungus of rice. Agr Hort 10:17–22

    Google Scholar 

  • Yabuta T, Sumiki Y (1938) The crystallization of gibberellinsA and B. J Agr Chem Soc Japan 14:1526

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marcus Straeten for cloning plasmid pΔppt1 during his diploma thesis as well as Niklas Danne-Rasche for generating strain 6314/ΔDESPPT1 during his bachelor thesis. Furthermore, we thank Professor Dr. Lewis Mander from the Australian National University, Canberra, Australia, as well as Professor Dr. Peter Hedden of the Rothamsted Research, Harpenden, Hertfordshire, UK, for providing GAs. We also thank Professor Dr. Arthur Ram from the University Leiden for helping to optimize fermentation parameters for Fusarium fujikuroi. This work was funded by the German Federation of Industrial Research Associations (AiF, project IGF16001N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Tudzynski.

Additional information

Tino Elter and Sabine Albermann contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albermann, S., Elter, T., Teubner, A. et al. Characterization of novel mutants with an altered gibberellin spectrum in comparison to different wild-type strains of Fusarium fujikuroi . Appl Microbiol Biotechnol 97, 7779–7790 (2013). https://doi.org/10.1007/s00253-013-4917-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4917-7

Keywords

Navigation