Skip to main content
Log in

Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1995) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J Bacteriol 179:5442–5447

    Google Scholar 

  2. Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 % maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    CAS  Google Scholar 

  3. Keis S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    Article  CAS  Google Scholar 

  4. Reid SJ, Rafudeen SM, Rafudeen S, Leat NG (1999) The genes controlling sucrose utilization in CIostridiunr beuerinckii NCIMB 8052 constitute an operon. Microbiology 145:1461–1472

    Article  CAS  Google Scholar 

  5. Wilkinson SR, Young M (1995) Physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052 chromosome. J Bacteriol 177:439–448

    CAS  Google Scholar 

  6. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068

    Article  CAS  Google Scholar 

  7. Green EM (2011) Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol 22:337–343

    Article  CAS  Google Scholar 

  8. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11

    Article  CAS  Google Scholar 

  9. Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328

    Article  CAS  Google Scholar 

  10. Mingardon F, Chanal A, Tardif C, Fierobe HP (2011) The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 77:2831–2838

    Article  CAS  Google Scholar 

  11. Feustel L, Nakotte S, Dürre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70:798–803

    Article  CAS  Google Scholar 

  12. Girbal L, Mortier-Barrière I, Raynaud F, Rouanet C, Croux C, Soucaille P (2003) Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69:4985–4988

    Article  CAS  Google Scholar 

  13. Nair RV, Papoutsakus ET (1994) Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J Bacteriol 176:5843–5846

    CAS  Google Scholar 

  14. Scotcher MC, Bennett GN (2008) Activity of abrB310 promoter in wild type and spo0A-deficient strains of Clostridium acetobutylicum. J Ind Microbiol Biotechnol 35:743–750

    Article  CAS  Google Scholar 

  15. Wang Y, Li X, Milne CB, Janssen H, Lin W, Phan G, Hu H, Jin YS, Price ND, Blaschek HP (2013) Development of a gene knockout system using mobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol 79:5853–5863

    Article  CAS  Google Scholar 

  16. Wang Y, Zhang ZT, Seo SO, Choi K, Lu T, Jin YS, Blaschek HP (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 20:1–5

    Google Scholar 

  17. Li GS (1998) Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA. Development of a reporter system for the study of gene expression for solvent production in Clostridium beijerinckii NRRL B592 and Clostridium acetobutylicum ATCC 824

  18. López-Contreras AM, Smidt H, van der Oost J, Claassen PA, Mooibroek H, de Vos WM (2001) Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production. Appl Environ Microbiol 67:5127–5133

    Article  Google Scholar 

  19. Quixley KW, Reid SJ (2000) Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene. J Mol Microbiol Biotechnol 2:53–57

    CAS  Google Scholar 

  20. Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S (2012) Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 14:569–578

    Article  CAS  Google Scholar 

  21. Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E (1995) Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector pAK80. Appl Environ Microbiol 61:2540–2547

    CAS  Google Scholar 

  22. Peekhaus N, Conway T (1998) Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 180:1777–1785

    CAS  Google Scholar 

  23. van der Vossen JM, Lelie D, Venema G (1987) Isolation and characterization of Streptococcuts cremnoris Wg2-specific promoters. Appl Environ Microbiol 53:2452–2457

    Google Scholar 

  24. York GM, Stubbe J, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting the synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397

    Article  CAS  Google Scholar 

  25. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 93:273–283

    Article  Google Scholar 

  26. Oultram JD, Loughlin M, Swinfield TJ, Brehm JK, Thompson DE, Minton NP (1988) Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 56:83–88

    Article  CAS  Google Scholar 

  27. Oh YH, Eom GT, Kang KH, Choi JW, Song BK, Lee SH, Park SJ (2015) Optimized transformation of newly constructed Escherichia coli-Clostridia shuttle vectors into Clostridium beijerinckii. Appl Biochem Biotechnol 177:226–236

    Article  CAS  Google Scholar 

  28. Chung GH, Lee YP, Jeohn GH, Yoo OJ, Rhee JS (1991) Cloning and Nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agric Boil Chem 55:2359–2365

    Article  CAS  Google Scholar 

  29. Edwards AN, Pascual RA, Childress KO, Nawrocki KL, Woods EC, McBride SM (2015) An alkaline phosphatase reporter for use in Clostridium difficile. Anaerobe 32:98–104

    Article  CAS  Google Scholar 

  30. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Article  CAS  Google Scholar 

  31. Park SJ, Park JP, Lee SY (2002) Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett 214:217–222

    Article  CAS  Google Scholar 

  32. Park SJ, Lee SY (2003) Identification and characterization of a new enoyl-coA hydratase involved in the biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  CAS  Google Scholar 

  33. Park SJ, Lee SH, Oh YH, Lee SY (2015) Establishment of biosynthesis pathway for (R)-3-hydroxyalkanoates in recombinant Escherichia coli. Korean J Chem Eng 32:702–706

    Article  CAS  Google Scholar 

  34. D’Souza R, Pandeya DR, Hong ST (2012) Review: Lactococcus lactis: an efficient gram positive cell factory for the production and secretion of recombinant protein. Biomed Res 23:1–7

    Google Scholar 

  35. Siemerink MAJ, Kuit W, Contreras AML, Eggink G, van der Oost J, Kengen SW (2011) d-2,3-Butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl Environ Microbiol 77:2582–2588

    Article  CAS  Google Scholar 

  36. Mingardon F, Perret S, Bélaïch A, Tardif C, Bélaïch J, Fierobe H (2005) Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobytylicum ATCC 824. Appl Environ Microbiol 71:1215–1222

    Article  CAS  Google Scholar 

  37. Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J Chem Eng 32:1945–1959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the R&D Program of MOTIE/KEIT (10049674) and 2014 Research Fund of Myongji University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Hwan Lee or Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.H., Eom, G.T., Kang, K.H. et al. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii . Bioprocess Biosyst Eng 39, 555–563 (2016). https://doi.org/10.1007/s00449-016-1537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1537-5

Keywords

Navigation