Skip to main content

Advertisement

Log in

Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Decomposition of lignocelluloses by cooperative microbial actions is an essential process of carbon cycling in nature and provides a basis for biomass conversion to fuels and chemicals in biorefineries. In this study, structurally stable symbiotic aero-tolerant lignocellulose-degrading microbial consortia were obtained from biodiversified microflora present in industrial sugarcane bagasse pile (BGC-1), cow rumen fluid (CRC-1), and pulp mill activated sludge (ASC-1) by successive subcultivation on rice straw under facultative anoxic conditions. Tagged 16S rRNA gene pyrosequencing revealed that all isolated consortia originated from highly diverse environmental microflora shared similar composite phylum profiles comprising mainly Firmicutes, reflecting convergent adaptation of microcosm structures, however, with substantial differences at refined genus level. BGC-1 comprising cellulolytic Clostridium and Acetanaerobacterium in stable coexistence with ligninolytic Ureibacillus showed the highest capability on degradation of agricultural residues and industrial pulp waste with CMCase, xylanase, and β-glucanase activities in the supernatant. Shotgun pyrosequencing of the BGC-1 metagenome indicated a markedly high relative abundance of genes encoding for glycosyl hydrolases, particularly for lignocellulytic enzymes in 26 families. The enzyme system comprised a unique composition of main-chain degrading and side-chain processing hydrolases, dominated by GH2, 3, 5, 9, 10, and 43, reflecting adaptation of enzyme profiles to the specific substrate. Gene mapping showed metabolic potential of BGC-1 for conversion of biomass sugars to various fermentation products of industrial importance. The symbiotic consortium is a promising simplified model for study of multispecies mechanisms on consolidated bioprocessing and a platform for discovering efficient synergistic enzyme systems for biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allgaier M, Reddy A, Park JI, Ivanova N, D’haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, Vander Gheynst JS, Hugenholtz P (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5:e8812

    Article  PubMed  Google Scholar 

  • Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558

    Article  PubMed  CAS  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frankh ED, Emersoni JB, Wacklini P, Coutinhoj PM, Henrissatj B, Nelsoni KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Nat Acad Sci USA 106:1946–1953

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–238

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Dong X (2004) Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Inter J Sys Evol Microbiol 54:2257–2262

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012) Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol 103:186–191

    Article  PubMed  CAS  Google Scholar 

  • Doi RH (2008) Cellulases of mesophilic microorganisms cellulosome and noncellulosome producers. Ann NY Acad Sci 1125:267–279

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  PubMed  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin, Germany

    Google Scholar 

  • Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH (2011) Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol 102:742–747

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Holtzapple MT (2010) Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresour Technol 101:2825–2836

    Article  PubMed  CAS  Google Scholar 

  • Guo P, Zhu W, Wang H, Lü Y, Wang X, Zheng D, Cui Z (2010) Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J Microbiol Biotechnol 20:254–264

    PubMed  CAS  Google Scholar 

  • Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534

    Article  PubMed  CAS  Google Scholar 

  • He Q, Hemme CL, Jiang H, He Z, Zhou J (2011) Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102:9586–9592

    Article  PubMed  CAS  Google Scholar 

  • Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhaya V, Champreda V, Eurwilaichitr L (2010) Metagenomic analysis on phylogenetics and metabolic potential of microbial community in primary tropical peat swamp forest. Microb Ecol 61:518–528

    Article  PubMed  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2004) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133–142

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2008) Network relationships of bacteria in a stable mixed culture. Microb Ecol 56:403–411

    Article  PubMed  CAS  Google Scholar 

  • Li L-L, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuel 2:10

    Article  Google Scholar 

  • Lu Y, Zhang Y, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Nat Acad Sci USA 103:16165–16169

    Article  PubMed  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–739

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    Article  PubMed  CAS  Google Scholar 

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130

    Article  PubMed  CAS  Google Scholar 

  • Narisawa N, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2007) Effect of adding cellulolytic bacterium on stable cellulose-degrading microbial community. J Biosci Bioeng 104:432–434

    Article  PubMed  CAS  Google Scholar 

  • Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L (2011) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22:462–469

    Article  Google Scholar 

  • Okura N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133

    Article  Google Scholar 

  • Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng JF, Hugenholtz P, McSweeney CS, Morrison M (2010) Adaptation of herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Nat Acad Sci 107:14793–14798

    Article  PubMed  CAS  Google Scholar 

  • Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107:488–493

    Article  PubMed  CAS  Google Scholar 

  • Ren N, Xing D, Rittmann BE, Zhao L, Xie T, Zhao X (2007) Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ Microbiol 9:1112–1125

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • TAPPI (1992) TAPPI test method: determination of cellulose and pentosan contents of wood. Technical Association of Pulp and Paper Industry (TAPPI) Press, Atlanta

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 102:9321–9324

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Weber CF, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym Microb Technol 47:283–290

    Article  CAS  Google Scholar 

  • Zhang Q, He J, Tian M, Maoa Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5278–5280

    Google Scholar 

  • Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is under the JSPS-BIOTEC collaborative project supported by a research grant from the National Science and Technology Development Agency (P-11-00926). Proofreading and comments by Dr. Philip Shaw and Dr. Varadom Charoensawan are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verawat Champreda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongwilaiwalin, S., Laothanachareon, T., Mhuantong, W. et al. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appl Microbiol Biotechnol 97, 8941–8954 (2013). https://doi.org/10.1007/s00253-013-4699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4699-y

Keywords

Navigation