Skip to main content
Log in

Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Halophilic β-lactamase (BLA) has been successfully used as a novel fusion partner for soluble expression of aggregation-prone foreign proteins in Escherichia coli cytoplasm (Appl Microbiol Biotechnol 86:649–658, 2010b). This halophilic BLA fusion technology was applied here for secretory expression in Brevibacillus. The “Brevibacillus in vivo cloning” method, recently developed by Higeta Shoyu group, for the construction and transformation of Brevibacillus expression vectors facilitates efficient screening of the production conditions of Brevibacillus expression system. Two single-chain antibodies (scFv), HyHEL-10 single chain scFv (scFvHEL) and anti-fluorescein single chain scFv (scFvFLU), were successfully secreted to culture supernatant as a fusion protein with halophilic BLA. The scFvHEL-His, purified after cleavage of BLA portion with thrombin, was fully active: it formed a stoichiometric complex with the antigen, lysozyme, and inhibited the enzymatic activity. The scFvFLU-His, similarly expressed and purified, stoichiometrically inhibited fluorescence intensity of fluorescein. The molecular mass of scFvHEL-His was determined to be 27,800 Da by light scattering measurements, indicating its monomeric structure in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Wittgren B, Wahlund KG (2003) Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments. Anal Chem 75:4279–4291

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Tokunaga H, Yamaguchi R, Tokunaga M (2010) High solubility supports efficient refolding of thermally unfolded beta-lactamase. Int J Biol Macromol 47:706–709

    Article  PubMed  CAS  Google Scholar 

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  PubMed  CAS  Google Scholar 

  • Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109:170–179

    Article  PubMed  CAS  Google Scholar 

  • Chon JH, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. N Biotechnol 28:458–463

    Article  PubMed  CAS  Google Scholar 

  • DasSarma S, Berquist BR, Coker JA, DasSarma P, Muller JA (2006) Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Systems 2:3

    Article  PubMed  Google Scholar 

  • Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11:675–687

    PubMed  CAS  Google Scholar 

  • Ejima D, Yumioka R, Arakawa T, Tsumoto K (2005) Arginine as an effective additive in gel permeation chromatography. J Chromatogr A 1094:49–55

    Article  PubMed  CAS  Google Scholar 

  • Elcock AH, McCammon JA (1998) Electrostatic contributions to the stability of halophilic proteins. J Mol Biol 280:731–748

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Ohkuri T, Onodera R, Ueda T (2007) Stable supply of large amounts of human Fab from the inclusion bodies in E. coli. J Biochem 141:699–707

    Article  PubMed  CAS  Google Scholar 

  • Fursova KK, Laman AG, Melnik BS, Semisotnov GV, Kopylov PK, Kiseleva NV, Nesmeyanov VA, Brovko FA (2009) Refolding of scFv mini-antibodies using size-exclusion chromatography via arginine solution layer. J Chromatogr B Analyt Technol Biomed Life Sci 877:2045–2051

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DP, Glover DJ (2001) Therapeutic antibody production technologies: molecules, applications, expression and purification. Curr Opin Drug Discov Devel 4:172–185

    PubMed  CAS  Google Scholar 

  • Kontermann RE (2010) Alternative antibody formats. Curr Opin Mol Ther 12:176–183

    PubMed  CAS  Google Scholar 

  • Kudou M, Ejima D, Sato H, Yumioka R, Arakawa T, Tsumoto K (2011) Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein Expr Purif 77:68–74

    Article  PubMed  CAS  Google Scholar 

  • Kurucz I, Titus JA, Jost CR, Segal DM (1995) Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies. Mol Immunol 32:1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9:497–501

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  PubMed  CAS  Google Scholar 

  • Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD (2004) Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 343:685–701

    Article  PubMed  CAS  Google Scholar 

  • Mizukami M, Hanagata H, Miyauchi A (2010) Brevibacillus expression system: host–vector system for efficient production of secretory proteins. Curr Pharm Biotechnol 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Ottiger M, Thiel MA, Feige U, Lichtlen P, Urech DM (2009) Efficient intraocular penetration of topical anti-TNF-alpha single-chain antibody (ESBA105) to anterior and posterior segment without penetration enhancer. Invest Ophthalmol Vis Sci 50:779–786

    Article  PubMed  Google Scholar 

  • Shukla AA, Thommes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Stockwin LH, Holmes S (2003) The role of therapeutic antibodies in drug discovery. Biochem Soc Trans 31:433–436

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Kadowaki K, Udaka S (1989) Screening and characterization of protein-hyperproducing bacteria without detectable exoprotease activity. Agric Biol Chem 53:691–699

    Article  CAS  Google Scholar 

  • Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2004) Highly efficient renaturation of beta-lactamase isolated from moderately halophilic bacteria. FEBS Lett 558:7–12

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Fukada H, Tokunaga M (2006a) Opposing effects of NaCl on reversibility and thermal stability of halophilic beta-lactamase from a moderate halophile, Chromohalobacter sp. 560. Biophys Chem 119:316–320

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Oda Y, Yonezawa Y, Arakawa T, Tokunaga M (2006b) Contribution of halophilic nucleoside diphosphate kinase sequence to the heat stability of chimeric molecule. Protein Pept Lett 13:525–530

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Tokunaga M (2010a) Novel soluble expression technologies derived from unique properties of halophilic proteins. Appl Microbiol Biotechnol 88:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Saito S, Sakai K, Yamaguchi R, Katsuyama I, Arakawa T, Onozaki K, Tokunaga M (2010b) Halophilic beta-lactamase as a new solubility- and folding-enhancing tag protein: production of native human interleukin 1alpha and human neutrophil alpha-defensin. Appl Microbiol Biotechnol 86:649–658

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto K, Nakaoki Y, Ueda Y, Ogasahara K, Yutani K, Watanabe K, Kumagai I (1994) Effect of the order of antibody variable regions on the expression of the single-chain HyHEL10 Fv fragment in E. coli and the thermodynamic analysis of its antigen-binding properties. Biochem Biophys Res Commun 201:546–551

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto K, Shinoki K, Kondo H, Uchikawa M, Juji T, Kumagai I (1998) Highly efficient recovery of functional single-chain Fv fragments from inclusion bodies overexpressed in Escherichia coli by controlled introduction of oxidizing reagent—application to a human single-chain Fv fragment. J Immunol Methods 219:119–129

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Wörn A, Plückthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305:989–1010

    Article  PubMed  Google Scholar 

  • Yamada T (2011) Therapeutic monoclonal antibodies. Keio J Med 60:37–46

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2011) Salt-dependent thermo-reversible alpha-amylase: cloning and characterization of halophilic alpha-amylase from moderately halophilic bacterium, Kocuria varians. Appl Microbiol Biotechnol 89:673–684

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R, Inoue Y, Tokunaga H, Ishibashi M, Arakawa T, Sumitani J, Kawaguchi T, Tokunaga M (2012) Halophilic characterization of starch-binding domain from Kocuria varians alpha-amylase. Int J Biol Macromol 50:95–102

    Article  PubMed  CAS  Google Scholar 

  • Yashiro K, Lowenthal JW, O’Neil TE, Ebisu S, Takagi H (2001) High-level protein production of recombinant chicken interferon-γ by Brevibacillus choshinensis. Protein Expr Purif 23:113–120

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa Y, Izutsu K, Tokunaga H, Maeda H, Arakawa T, Tokunaga M (2007) Dimeric structure of nucleoside diphosphate kinase from moderately halophilic bacterium: contrast to the tetrameric Pseudomonas counterpart. FEMS Microbiol Lett 268:52–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Daisuke Ejima and Haruna Sato for the assistance of SEC MALS measurements. This work was supported by a Grant in Aid for Science Research (20580372, 23580475) to M.T. from MEXT Japan, and by funding from the Institute for Fermentation, Osaka to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Tokunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokunaga, M., Mizukami, M., Yamasaki, K. et al. Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner. Appl Microbiol Biotechnol 97, 8569–8580 (2013). https://doi.org/10.1007/s00253-013-4695-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4695-2

Keywords

Navigation