Skip to main content
Log in

Salt-dependent thermo-reversible α-amylase: cloning and characterization of halophilic α-amylase from moderately halophilic bacterium, Kocuria varians

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A moderately halophilic bacterium, Kocuria varians, was found to produce active α-amylase (K. varians α-amylase (KVA)). We have observed at least six different forms of α-amylase secreted by this bacterium into the culture medium. Characterization of these KVA forms and cloning of the corresponding gene revealed that KVA comprises pre-pro-precursor form of α-amylase catalytic domain followed by the tandem repeats, which show high similarity to each other and to the starch binding domain (SBD) of other α-amylases. The observed six forms were most likely derived by various processing of the protein product. Recombinant KVA protein was successfully expressed in Escherichia coli as a fusion protein and was purified with affinity chromatography after cleavage from fusion partner. The highly acidic amino acid composition of KVA and the highly negative electrostatic potential surface map of the modeled structure strongly suggested its halophilic nature. Indeed, KVA showed distinct salt- and time-dependent thermal reversibility: when α-amylase was heat denatured at 85°C for 3 min in the presence of 2 M NaCl, the activity was recovered upon incubation on ice (50% recovery after 15 min incubation). Conversely, KVA denatured in 0.1 M NaCl was not refolded at all, even after prolonged incubation. KVA activity was inhibited by proteinaceous α-amylase inhibitor from Streptomyces nitrosporeus, which had been implicated to inhibit only animal α-amylases. KVA with putative SBD regions was found to digest raw starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci 7:564–572

    Article  CAS  Google Scholar 

  • Arakawa T, Tokunaga M (2004) Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins. Protein Pept Lett 11:125–132

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  • Coronado M-J, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, Ventosa A (2000) The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146:861–868

    CAS  Google Scholar 

  • Eisenberg H, Mevarech M, Zaccai G (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem 43:1–62

    Article  CAS  Google Scholar 

  • Frillingos S, Linden A, Niehaus F, Vargas C, Nieto JJ, Ventosa A, Antranikian G, Drainas C (2000) Cloning and expression of alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J Appl Microbiol 88:495–503

    Article  CAS  Google Scholar 

  • Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9:85–89

    Article  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    CAS  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495

    Article  CAS  Google Scholar 

  • Ikezono T, Omori A, Ichinose S, Pawankar R, Watanabe A, Yagi T (2001) Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochim Biophys Acta 1535:258–265

    CAS  Google Scholar 

  • Ishibashi M, Sakashita K, Tokunaga H, Arakawa T, Tokunaga M (2003) Activation of halophilic nucleoside diphosphate kinase by a non-ionic osmolyte, trimethylamine N-oxide. J Protein Chem 22:345–351

    Article  CAS  Google Scholar 

  • Kamekura M, Onishi H (1978) Flocculation and adsorption of enzymes during growth of a moderate halophile, Micrococcus varians var. halophilus. Can J Microbiol 24:703–709

    Article  CAS  Google Scholar 

  • Kawaguchi T, Nagae H, Murao S, Arai M (1992) Purification and some properties of a Haim-sensitive α-amylase from newly isolated Bacillus sp. No. 195. Biosci Biotechnol Biochem 56:1792–1796

    Article  CAS  Google Scholar 

  • Kiran KK, Chandra TS (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Appl Microbiol Biotechnol 77:1023–1031

    Article  CAS  Google Scholar 

  • Kobayashi T, Kamekura M, Kanlayakrit W, Onishi H (1986) Production, purification, and characterization of an amylase from the moderate halophile, Micrococcus varians subspecies halophilus. Microbios 46:165–177

    CAS  Google Scholar 

  • Kushner DJ (1985) The halobacteriaceae. Bacteria 8:171–214

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  CAS  Google Scholar 

  • Mijts BN, Patel BK (2002) Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148:2343–2349

    CAS  Google Scholar 

  • Oren A, Larimer F, Richardson P, Lapidus A, Csonka LN (2005) How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles 9:275–279

    Article  CAS  Google Scholar 

  • Pérez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306

    Article  Google Scholar 

  • Rao JKM, Argos P (1981) Structure stability of halophilic proteins. Biochemistry 20:6536–6543

    Article  CAS  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  CAS  Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Article  CAS  Google Scholar 

  • Sivakumar N, Li N, Tang JW, Patel BK, Swaminathan K (2006) Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett 580:2646–2652

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR (2007) Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11:505–515

    Article  CAS  Google Scholar 

  • Sumitani J, Kawaguchi T, Hattori N, Murao S, Arai M (1993) Molecular cloning and expression of proteinaceous α-amylase inhibitor gene from Streptomyces nitrosporeus in Escherichia coli. Biosci Biotechnol Biochem 57:1243–1248

    Article  CAS  Google Scholar 

  • Sumitani J, Tottori T, Kawaguchi T, Arai M (2000a) New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no 195 α-amylase contributes to starch binding and raw starch degrading. Biochem J 350:477–484

    Article  CAS  Google Scholar 

  • Sumitani J, Tsujimoto Y, Kawaguchi T, Arai M (2000b) Cloning and secretive expression of the gene encoding the proteinaceous α-amylase inhibitor Paim from Streptomyces corchorusii. J Biosci Bioeng 90:214–216

    CAS  Google Scholar 

  • Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2004) Highly efficient renaturation of beta-lactamase isolated from moderately halophilic bacteria. FEBS Lett 558:7–12

    Article  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Fukada H, Tokunaga M (2006a) Opposing effects of NaCl on reversibility and thermal stability of halophilic beta-lactamase from a moderate halophile, Chromohalobacter sp. 560. Biophys Chem 119:316–320

    Article  CAS  Google Scholar 

  • Tokunaga H, Oda Y, Yonezawa Y, Arakawa T, Tokunaga M (2006b) Contribution of halophilic nucleoside diphosphate kinase sequence to the heat stability of chimeric molecule. Protein Pept Lett 13:525–530

    Article  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Tokunaga M (2008a) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17:1603–1610

    Article  CAS  Google Scholar 

  • Tokunaga H, Ishibashi M, Arisaka F, Arai S, Kuroki R, Arakawa T, Tokunaga M (2008b) Residue 134 determines the dimer-tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacteria. FEBS Lett 582:1049–1054

    Article  CAS  Google Scholar 

  • Tokunaga H, Izutsu K, Arai S, Yonezawa Y, Kuroki R, Arakawa T, Tokunaga M (2010a) Dimer-tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacterium Chromohalobacter salexigens DSM3043:Both residues 134 and 136 are critical for the tetramer assembly. Enzyme Microb Technol 46:129–135

    Article  CAS  Google Scholar 

  • Tokunaga H, Saito S, Sakai K, Yamaguchi R, Katsuyama I, Arakawa T, Onozaki K, Arakawa T, Tokunaga M (2010b) Halophilic β-lactamase as a new solubility- and folding-enhancing tag protein: production of native human interleukin 1α and human neutrophil α-defensin. Appl Microbiol Biotechnol 86:649–658

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  Google Scholar 

  • Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Bio Technol 9:443–448

    CAS  Google Scholar 

  • Yin XH, Gerbaud C, Francou FX, GuerineauM VMJ (1998) amlC, Another amylolytic gene maps close to the amlB locus in Streptomyces lividans TK24. Gene 215:171–180

    Article  CAS  Google Scholar 

  • Yonezawa Y, Izutsu K, Tokunaga H, Maeda H, Arakawa T, Tokunaga M (2007) Dimeric structure of nucleoside diphosphate kinase from moderately halophilic bacterium: contrast to the tetrameric Pseudomonas counterpart. FEMS Microbiol Lett 268:52–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are most grateful to Drs. J. Sumitani and I. Hanashiro for their helpful discussions. We also thank Mr. S. Yamaguchi for his technical assistance and contribution. This work was supported by Grant in Aid for Science Research (20580372) from MEXT Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Tokunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, R., Tokunaga, H., Ishibashi, M. et al. Salt-dependent thermo-reversible α-amylase: cloning and characterization of halophilic α-amylase from moderately halophilic bacterium, Kocuria varians . Appl Microbiol Biotechnol 89, 673–684 (2011). https://doi.org/10.1007/s00253-010-2882-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2882-y

Keywords

Navigation