Skip to main content
Log in

N-glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Expression of foreign enzymes in yeast is a traditional genetic engineering approach; however, useful secretory enzymes are not produced in every case. The hyperthermostable α-amylase encoded by the AmyL gene of Bacillus licheniformis was expressed in Saccharomyces cerevisiae; however, it was only weakly produced and was degraded by the proteasome. To determine the cause of low α-amylase production, AmyL was expressed in a panel of yeast mutants harboring knockouts in non-essential genes. Elevated AmyL production was observed in 44 mutants. The knockout genes were classified into six functional categories. Remarkably, all non-essential genes required for N-linked oligosaccharide synthesis and a gene encoding an oligosaccharyl transferase subunit were identified. Immunoblotting demonstrated that differently underglycosylated forms of AmyL were secreted from oligosaccharide synthesis-deficient mutants, while a fully glycosylated form was produced by wild-type yeast, suggesting that N-linked glycosylation of AmyL inhibited its secretion in yeast. Mutational analysis of six potential N-glycosylation sites in AmyL revealed that the N33Q and N309Q mutations remarkably affected AmyL production. To achieve higher AmyL production in yeast, all six N-glycosylation sites of AmyL were mutated. In wild-type yeast, production of the resulting non-glycosylated form of AmyL was threefold higher than that of the glycosylated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi M, Hennet T (2001) Congenital disorders of glycosylation: genetic model systems lead the way. Trends Cell Biol 11:136–141

    Article  CAS  Google Scholar 

  • Ahn JO, Choi ES, Lee HW, Hwang SH, Kim CS, Jang HW, Haam SJ, Jung JK (2004) Enhanced secretion of Bacillus stearothermophils L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl Microbiol Biotechnol 64:833–839

    Article  CAS  Google Scholar 

  • Burda P, Aebi M (1998) The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8:455–462

    Article  CAS  Google Scholar 

  • Chen Y, Partow S, Scalcinati G, Siewers V, Nielsen J (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12:598–607

    Article  CAS  Google Scholar 

  • Chi JH, Roos J, Dean N (1996) The OST4 gene of Saccharomyces cerevisiae encodes an unusually small protein required for normal levels of oligosaccharyltransferase activity. J Biol Chem 271:3132–3140

    Article  CAS  Google Scholar 

  • Chung BH, Park KS (1998) Simple approach to reducing proteolysis during secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol Bioeng 57:243–249

    Google Scholar 

  • Cipollo JF, Trimble RB (2002) The Saccharomyces cerevisiae alg12Δ mutant reveals a role for the middle-arm α1,2Man- and upper-arm α1,2Manα1,6Man- residues of Glc3Man9GlcNAc2-PP-Dol in regulating glycoprotein glycan processing in the endoplasmic reticulum and Golgi apparatus. Glycobiology 12:749–762

    Article  CAS  Google Scholar 

  • Cooper A, Bussey H (1989) Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol Cell Biol 9:2706–2714

    CAS  Google Scholar 

  • Decklerck N, Joyet P, Trosset J-Y, Garnier J, Gaillardin C (1995) Hyperthermostable mutants of Bacillus licheniformis α-amylase: multiple amino acid replacements and molecular modeling. Protein Eng 8:1029–1037

    Article  Google Scholar 

  • Esmon B, Esmon PC, Schekman R (1984) Early steps in processing of yeast glycoproteins. J Biol Chem 259:10322–10327

    CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  Google Scholar 

  • Harmsen MM, Bruyne MI, Raué HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46:365–370

    Article  CAS  Google Scholar 

  • Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15:364–370

    Article  CAS  Google Scholar 

  • Heinemeyer W, Gruhler A, Mohrle V, Mahe Y, Wolf DH (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268:5115–5120

    CAS  Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  CAS  Google Scholar 

  • Hitt R, Wolf DH (2004) DER7, encoding alpha-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4:815–820

    Article  CAS  Google Scholar 

  • Hoshida H, Fujita T, Murata K, Kubo K, Akada R (2005) Copper-dependent production of a Pycnoporus coccineus extracellular laccase in Aspergillus oryzae and Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:1090–1097

    Article  CAS  Google Scholar 

  • Huang X-M, Yang Q, Liu Z-H, Fan J-X, Chen X-L, Song J-Z, Wang Y (2010) Cloning and heterologous expression of a novel endoglucanase gene egVIII from Trichoderma viride in Saccharomyces cerevisiae. Appl Biochem Biotechnol 162:103–115

    Article  CAS  Google Scholar 

  • Huffaker TC, Robbins PW (1983) Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci USA 80:7466–7470

    Article  CAS  Google Scholar 

  • Jacob M, Jaros D, Rohm H (2010) Recent advances in milk clotting enzyme. Int J Dairy Technol 64:14–33

    Article  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  CAS  Google Scholar 

  • Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219:632–637

    Article  CAS  Google Scholar 

  • Juge N, Søgaard M, Chaix J-C, Martin-Eauclaire M-F, Svensson B, Marchis-Mouren G, Gou X-J (1993) Comparison of barley malt α-amylase isozyms1 and 2: construction of cDNA hybrids by in vivo recombination and their expression in yeast. Gene 130:159–166

    Article  CAS  Google Scholar 

  • Karaoglu D, Kelleher DJ, Gilmore R (1995) Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J Cell Biol 130:567–577

    Article  CAS  Google Scholar 

  • Kitagawa T, Hoshida H, Akada R (2007) Genome-wide analysis of cellular response to bacterial genotoxin CdtB in yeast. Infect Immun 75:1393–1402

    Article  CAS  Google Scholar 

  • Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54:277–286

    Article  CAS  Google Scholar 

  • Knauer R, Lehle L (1999a) The oligosaccharyltransferase complex from yeast. Biochem Biophys Acta 1426:259–273

    Article  CAS  Google Scholar 

  • Knauer R, Lehle L (1999b) The oligosaccharyltransferase complex from Saccharomyces cerevisiae. Isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex. J Biol Chem 274:17249–17256

    Article  CAS  Google Scholar 

  • Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–2317

    Article  CAS  Google Scholar 

  • Kostova Z, Wolf DH (2005) Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J Cell Sci 118:1485–1492

    Article  CAS  Google Scholar 

  • Kotula L, Curtis PJ (1991) Evaluation of foreign gene codon optimization in yeast: expression of a mouse Ig kappa chain. Biotechnology (N Y) 9:1386–1389

    Article  CAS  Google Scholar 

  • Langley KE, Egan KM, Barendt JM, Parker CG, Bitter GA (1988) Characterization of purified hepatitis B surface antigen containing pre-S(2) epitopes expressed in Saccharomyces cerevisiae. Gene 67:229–245

    Article  CAS  Google Scholar 

  • Lazar T, Scheglmann D, Gallwitz D (2002) A novel phospholipid-binding protein from the yeast Saccharomyces cerevisiae with dual binding specificities for the transport GTPase Ypt7p and the Sec1-related Vps33p. Eur J Cell Biol 81:635–646

    Article  CAS  Google Scholar 

  • Li X-L, Ljungdahl LG (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Appl Environ Microbiol 62:209–213

    CAS  Google Scholar 

  • Ljubijankíc G, Storici F, Glisin V, Bruŝchi CV (1999) Synthesis and secretion of Providencia rettgeri and Escherichia coli heterodimeric penicillin amidases in Saccharomyces cerevisiae. Gene 228:225–232

    Article  Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raué HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79:199–206

    Article  CAS  Google Scholar 

  • Machius M, Decklerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder–>order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 15:281–292

    Article  Google Scholar 

  • Mancini R, Aebi M, Helenius A (2003) Multiple endoplasmic reticulum-associated pathways degrade mutant yeast carboxypeptidase Y in mammalian cells. J Biol Chem 278:46895–46905

    Article  CAS  Google Scholar 

  • Mellor J, Dobson MJ, Kingsman AJ, Kingsman SM (1987) A transcriptional activator is located in the coding region of yeast PGK gene. Nucleic Acid Res 15:6243–6259

    Article  CAS  Google Scholar 

  • Moracci M, La Volpe A, Pulitzer JF, Rossi M, Ciaramella M (1992) Expression of the thermostable β-galactosidase gene from the archeabacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. J Bacteriol 174:873–882

    CAS  Google Scholar 

  • Peterson MR, Emr SD (2001) The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Traffic 2:476–486

    Article  CAS  Google Scholar 

  • Pignatelli R, Vai M, Alberghina L, Popolo L (1998) Expression and secretion of β-galactosidase in Saccharomyces cerevisiae using the signal sequences of GgpI, the major yeast glycosylphosphatidylinositol-containing protein. Biotechnol Appl Biochem 27:81–88

    Article  CAS  Google Scholar 

  • Reiss G, te Heesen S, Gilmore R, Zufferey R, Aebi M (1997) A specific screen for oligosaccharyltransferase mutations identifies the 9 kDa OST5 protein required for optimal activity in vivo and in vitro. EMBO J 16:1164–1172

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Sander P, Grünewald S, Bach M, Haase W, Reiläder H, Michel H (1994) Heterologous expression of the human D2s dopamine receptor in protease deficient Saccharomyces cerevisiae strains. Eur J Biochem 226:697–705

    Article  CAS  Google Scholar 

  • Shimoi H, Okuda M, Ito K (2000) Molecular cloning and application of a gene complementing phantothenic acid auxotrophy of sake yeast Kyokai No. 7. J Biosci Bioeng 90:643–647

    CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  Google Scholar 

  • Spear ED, Ng DT (2003) Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 14:2756–2767

    Article  CAS  Google Scholar 

  • Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271:11588–11594

    Article  CAS  Google Scholar 

  • Stagljar I, te Heesen S, Aebi M (1994) New phenotype of mutations deficient in glucosylation of the lipid-linked oligosaccharide: cloning of the ALG8 locus. Proc Natl Acad Sci USA 91:5977–5981

    Article  CAS  Google Scholar 

  • Suzuki H, Imaeda T, Kitagawa T, Kohda K (2012) Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. J Biotechnol 157:64–70

    Article  CAS  Google Scholar 

  • Trimble RB, Byrd JC, Maley F (1980) Effect of glucosylation of lipid intermediates on oligosaccharide transfer in solubilized microsomes from Saccharomyces cerevisiae. J Biol Chem 255:11892–11895

    CAS  Google Scholar 

  • Valkonen M, Penttila M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072

    Article  CAS  Google Scholar 

  • Wang L, Mao X, Ju D, Xie Y (2004) Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 279:55218–55223

    Article  CAS  Google Scholar 

  • Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270:4697–4704

    Article  CAS  Google Scholar 

  • Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050

    Article  CAS  Google Scholar 

  • Zhu H, Yao S, Wang S (2010) MFα signal peptide enhances the expression of cellulase eg1 gene in yeast. Appl Biochem Biotechnol 162:617–662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Industrial Technology Research Grant Program in 2009 from New Energy and Industrial Technology Development Organization (NEDO) of Japan and by Asian Core University Program between Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT). We thank Dr. N. Decklerck, Genetique Moleculaire et Cellulaire, France; Dr. D. Wolf, Stuttgart University, Germany; and Dr. H. Shimoi, National Research Institute, Japan for the kind gifts of the AmyL gene, the proteasome-deficient yeast strain, and TAA expression plasmid, respectively. We are also grateful to the DNA Core Facility at the Center for Gene Research of Yamaguchi University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Hoshida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshida, H., Fujita, T., Cha-aim, K. et al. N-glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 97, 5473–5482 (2013). https://doi.org/10.1007/s00253-012-4582-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4582-2

Keywords

Navigation