Skip to main content
Log in

Biochemical mutagens affect the preservation of fungi and biodiversity estimations

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many fungi have significant industrial applications or biosafety concerns and maintaining the original characteristics is essential. The preserved fungi have to represent the situation in nature for posterity, biodiversity estimations, and taxonomic research. However, spontaneous fungal mutations and secondary metabolites affecting producing fungi are well known. There is increasing interest in the preservation of microbes in Biological Resource Centers (BRC) to ensure that the organisms remain viable and stable genetically. It would be anathema if they contacted mutagens routinely. However, for the purpose of this discussion, there are three potential sources of biochemical mutagens when obtaining individual fungi from the environment: (a) mixtures of microorganisms are plated routinely onto growth media containing mutagenic antibiotics to control overgrowth by contaminants, (b) the microbial mixtures may contain microorganisms capable of producing mutagenic secondary metabolites, and (c) target fungi for isolation may produce “self” mutagens in pure culture. The probability that these compounds could interact with fungi undermines confidence in the preservation process and the potential effects of these biochemical mutagens are considered for the first time on strains held in BRC in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen MR, Salazar MP, Schaap PJ, Van De Vondervoort PJI, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, Van Dijck PWM, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, Van Ooyen AJJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, Van Den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, Van Peij NNME, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    Article  CAS  Google Scholar 

  • Bjeldanes LF, Chang GW, Thomson SV (1978) Detection of mutagens produced by fungi with the Salmonella typhimurium assay. Appl Environ Microbiol 35:1150–1154

    CAS  Google Scholar 

  • Bony S, Carcelen M, Olivier L, Devaux A (2006) Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. Toxicol Lett 166:67–76

    Article  CAS  Google Scholar 

  • Broughton R, Buddie AG, Smith D, Ryan MJ (2012) The effect of cryopreservation on genetic stability in strains of the fungus Trichoderma. Cryo-Lett 33: 299–306

    Google Scholar 

  • Bubak A, Mielzyńska D, Siwińska E, Ulfig K (1996) Test for the effects of mutagenic toxic fungal metabolites originating from municipal landfill sites. Med Pr 47:133–141

    CAS  Google Scholar 

  • Cole RJ, Schweikert MA, Jarvis BB (2003) Handbook of Secondary Fungal Metabolites, vol 3. Academic, Amsterdam, p 2544

    Google Scholar 

  • Coulombe JR (1993) Symposium: biological action of mycotoxins. J Dairy Sci 76:880–891

    Google Scholar 

  • Dupont J (2009) Penicillium. In: Liu D (ed) Molecular detection of foodborne pathogens. CRC Press, Boca Raton, pp 585–594

    Google Scholar 

  • Fleck SC, Burkhardt B, Pfeiffer E, Metzler M (2012) Alternaria toxins: altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol Lett 214:27–32

    Article  CAS  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 11

  • Hawksworth DL (2012) Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433

    Article  Google Scholar 

  • Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

    Article  CAS  Google Scholar 

  • Kammoun LG, Gargouri S, Barreau C, Richard-Forget F, Hajlaoui MR (2010) Trichothecene chemotypes of Fusarium culmorum infecting wheat in Tunisia. Int J Food Microbiol 140:84–89

    Article  CAS  Google Scholar 

  • Krasnoff SB, Sommers CH, Moon Y-S, Donzelli BGG, Vandenberg JD, Churchill ACL, Gibson DM (2006) Production of mutagenic metabolites by Metarhizium anisopliae. J Agric Food Chem 54:7083–7088

    Article  CAS  Google Scholar 

  • Liu J-K (2005) N-containing compounds of macromycetes. Chem Rev 105:2723–2744

    Article  CAS  Google Scholar 

  • Marin-Kuan M, Cavin C, Delatour T, Schilter B (2008) Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon 52:195–202

    Article  CAS  Google Scholar 

  • Martelli A, Mattioli F, Pastorino G, Robbiano L, Allavena A, Brambilla G (1991) Genotoxicity testing of chloramphenicol in rodent and human cells. Mutat Res Genet Toxicol 260:65–72

    Article  CAS  Google Scholar 

  • Mitchell DGI, Dixon PA, Gilbert PJ, White DJ (1980) Mutagenicity of antibiotics in microbial assays problems of evaluation. Mutat Res 79:91–105

    Article  Google Scholar 

  • Mobio TA, Anane R, Baudrimont I, Carratú M, Shier TW, Dano SD, Ueno Y, Creppy EE (2000) Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modification in C6 glioma cells. Toxicol Appl Pharmacol 164:91–96

    Article  CAS  Google Scholar 

  • Mori H, Kawai K, Ohbayashi F (1984) Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Res 44:2918–2923

    CAS  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  CAS  Google Scholar 

  • Oh H, Shin K (2008) The importance and global trends of biological resources—the introduction of the KCTC and fungal resources. Korean J Med Mycol 13:149–155

    Google Scholar 

  • Oliveria RJ, Mauro MO, Silva AF, Sartori D, Mantovani MS, Ribeiro LR (2011) The compounds 6-dimethylaminopurine and cycloheximide are genotoxic, mutagenic and alter performance and expression of genes TP53, CASP9 and CCNA in mammals systems test. Resumos do 57º Congresso Brasileiro de Genética, 30 de agosto a 2 de setembro de 2011. Centro de Convenções do Hotel Monte Real Resort, Águas de Lindóia, SP, Brasil www.sbg.org.br—ISBN 978-85-89109-06-2

  • Paterson RRM (2004) The isoepoxydon dehydrogenase gene of patulin biosynthesis in cultures and secondary metabolites as candidate PCR inhibitors. Mycol Res 108:1431–1437

    Article  CAS  Google Scholar 

  • Paterson RRM (2007) Zearalenone production and growth in drinking water inoculated with Fusarium graminearum. Mycol Prog 6:109–113

    Article  Google Scholar 

  • Paterson RRM, Lima N (2009) Mutagens manufactured in fungal culture may affect DNA/RNA of producing fungi. J Appl Microbiol 106:1070–1080

    Article  CAS  Google Scholar 

  • Paterson RRM, Lima N (2010) Toxicology of mycotoxins. EXS 100:31–63

    CAS  Google Scholar 

  • Paterson RRM, Lima N (2011) Penicillium—mycosis and mycotoxicosis. In: Liu D (ed) Molecular detection of human fungal pathogens. CRC Press, Boca Raton, pp 323–337

    Google Scholar 

  • Paterson RRM, Lima N (2012) Mutagens require to be considered when isolating and preserving fungi. In: Paterson R, Simões M, Pereira L, Santos C, Lima N (eds) Biological resource centres. Closing the gap between science and society, ECCO XXXI 14–15 June 2012, Braga, Abstracts Book, p 129

  • Paterson RRM, Sariah M, Lima N, Zainal Abidin MA, Santos C (2008) Mutagenic and inhibitory compounds produced by fungi affect detrimentally diagnosis and phylogenetic analyses. Curr Bioact Compd 4:245–257

    Article  CAS  Google Scholar 

  • Paterson R, Simões M, Pereira L, Santos C, Lima N (2012) Biological resource centres. Closing the gap between science and society, ECCO XXXI 14–15 June 2012, Braga, Portugal, Abstracts Book. ISBN: 978-972-97916-5-9

  • Pellanda H, Forges T, Bressenot A, Chango A, Bronowicki J-P, Gueant J-L, Namour F (2012) Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res 56:976–985

    Article  CAS  Google Scholar 

  • Ryan MJ, Smith D (2007) Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. Methods Mol Biol 368:127–140

    Article  CAS  Google Scholar 

  • Santos IM, Lima N (2001) Criteria followed in the establishment of a filamentous fungal culture collection—Micoteca da Universidade do Minho (MUM). World J Microbiol Biotechnol 17:215–220

    Article  Google Scholar 

  • Schrader TJ, Cherry W, Soper K, Langlois I, Vijay HM (2001) Examination of Alternaria alternata mutagenicity and effects of nitrosylation using the Ames Salmonella test. Teratog Carcinog Mutagen 21:261–274

    Article  CAS  Google Scholar 

  • Singh MP, Leighton MM, Barbieri LR, Roll DM, Urbance SE, Hoshan L, McDonald LA (2010) Fermentative production of self-toxic fungal secondary metabolites. J Ind Microbiol Biotechnol 37:335–340

    Article  CAS  Google Scholar 

  • Smith D, Ryan MJ (2008) The impact of OECD best practice on the validation of cryopreservation techniques for microorganisms. Cryo-Letters 29:63–72

    CAS  Google Scholar 

  • Stack ME, Prival MJ (1986) Mutagenicity of the Alternaria metabolites altertoxins I, II, and III. Appl Environ Microbiol 52:718–722

    CAS  Google Scholar 

  • Sterner O, Bergman R, Kesler E, Magnusson G, Nilsson L, Wickberg B, Zimerson E, Zetterberg G (1982) Mutagens in larger fungi. I. Forty-eight species screened for mutagenic activity in the Salmonella/microsome assay. Mutat Res 101:269–281

    Article  CAS  Google Scholar 

  • Wiebe M (2002) Myco-protein from Fusarium venenatum: a well-established product for human consumption. Appl Microbiol Biotechnol 58:421–427

    Article  CAS  Google Scholar 

  • Wiest A, Schnittker R, Plamann M, McCluskey K (2012) Best practices for fungal germplasm repositories and perspectives on their implementation. Appl Microbiol Biotechnol 93:975–982

    Article  CAS  Google Scholar 

  • Wilkinson JR, Kale SP, Bhatnagar D, Yu J, Ehrlich KC (2011) Expression profiling of non-aflatoxigenic Aspergillus parasiticus mutants obtained by 5-azacytosine treatment or serial mycelial transfer. Toxins 3:932–948

    Article  CAS  Google Scholar 

  • Wong JJ, Singh R, Hsieh DP (1977) Mutagenicity of fungal metabolites related to aflatoxin biosynthesis. Mutat Res 44:447–450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Russell M. Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, R.R.M., Lima, N. Biochemical mutagens affect the preservation of fungi and biodiversity estimations. Appl Microbiol Biotechnol 97, 77–85 (2013). https://doi.org/10.1007/s00253-012-4554-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4554-6

Keywords

Navigation