Skip to main content
Log in

Temperature increases from 55 to 75 °C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

  • Bioenergy and Biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 °C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 °C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 °C led to slight improvements in the reactor performance; these did not persist at 75 °C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 °C, altered by the temperature increase in the LBR. At an LBR temperature of 55 °C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 °C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahring BK (1995) Methanogenesis in thermophilic biogas reactors. Antonie Van Leeuwenhoek 67:91–102. doi:10.1007/BF00872197

    Article  CAS  Google Scholar 

  • Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 68 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452. doi:10.1016/S0043-1354(00)00526-1

    Article  CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48:835–852

    CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736. doi:10.1128/AEM.71.12.7724-7736.2005

    Article  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jonas AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741. doi:10.1128/AEM.00556-06

    Article  CAS  Google Scholar 

  • Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482. doi:10.1007/s00253-007-1009-6

    Article  CAS  Google Scholar 

  • Buhr HO, Andrews JF (1977) The thermophilic anaerobic digestion process. Water Res 11:129–143. doi:10.1016/0043-1354(77)90118-X

    Article  CAS  Google Scholar 

  • Cai J, Wang Y, Liu D, Zeng Y, Xue Y, Ma Y, Feng Y (2007) Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. Int J Syst Evol Microbiol 57:2333–2336. doi:10.1099/ijs.0.64758-0

    Article  CAS  Google Scholar 

  • Cirne DG, Lehtomäki A, Björnsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103:516–527. doi:10.1111/j.1365-2672.2006.03270.x

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0.0. User’s Guide and application. http://purl.oclc.org/estimates. Accessed 4 Jan 2012

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) Software open access T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171. doi:10.1186/1471-2105-10-171

    Article  Google Scholar 

  • Dahlenborg M, Borch E, Radström P (2001) Development of a combined selection and enrichment PCR procedure for Clostridium botulinum types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs. Appl Environ Microbiol 67:4781–4788. doi:10.1128/AEM.67.10.4781-4788.2001

    Article  CAS  Google Scholar 

  • Dahlenborg M, Borch E, Radström P (2003) Prevalence of Clostridium botulinum types B, E and F in faecal samples from Swedish cattle. Int J Food Microbiol 82:105–110. doi:10.1016/S0168-1605(02)00255-6

    Article  Google Scholar 

  • Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40:3542–3549. doi:10.1016/j.procbio.2005.03.062

    Article  CAS  Google Scholar 

  • Després VR, Nowoisky JF, Klose M, Conrad R, Andreae MO, Pöschl U (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–1141

    Article  Google Scholar 

  • Dugba PN, Zhang RH (1999) Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems—thermophilic versus mesophilic operations. Bioresour Technol 68:225–233. doi:10.1016/S0960-8524(98)00156-4

    Article  CAS  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197. doi:10.1128/AEM.67.1.190-197.2001

    Article  CAS  Google Scholar 

  • Fernandez A, Huang SY, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704

    CAS  Google Scholar 

  • Goodfellow M, Kämpfer P, Chun J, De Vos P, Rainey FA, Whitman WB (2010) Volume four: the Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual® of systematic bacteriology. Springer, New York, pp 1–931

    Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    Google Scholar 

  • Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  Google Scholar 

  • Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B (2008) Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205. doi:10.1016/j.syapm.2008.02.003

    Article  CAS  Google Scholar 

  • Kongjan P, Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035. doi:10.1016/j.biortech.2010.12.009

    Article  CAS  Google Scholar 

  • Krakat N, Westphal A, Satke K, Schmidt S, Scherer P (2010) The microcosm of a biogas fermenter: comparison of moderate hyperthermophilic (60°C) with thermophilic (55°C) conditions. Eng Life Sci 10:520–527. doi:10.1002/elsc.201000064

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  • Lepistö R, Rintala J (1996) Conversion of volatile fatty acids in an extreme thermophilic (76–80°C) upflow anaerobic sludge-blanket reactor. Bioresour Technol 56:221–227

    Article  Google Scholar 

  • Lueders T, Friedrich M (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66:2732–2742. doi:10.1128/AEM.66.7.2732-2742.2000

    Article  CAS  Google Scholar 

  • Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76:2540–2548. doi:10.1128/AEM.01423-09

    Article  CAS  Google Scholar 

  • Neumann L, Scherer P (2011) Impact of bioaugmentation by compost on the performance and ecology of an anaerobic digester fed with energy crops. Bioresour Technol 102:2931–2935. doi:10.1016/j.biortech.2010.11.068

    Article  CAS  Google Scholar 

  • Nielsen HB, Mladenovska Z, Ahring BK (2007) Bioaugmentation of a two-stage thermophilic (68°C/55°C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnol Bioeng 97:1638–1643. doi:10.1002/bit.21342

    Article  CAS  Google Scholar 

  • Nozhevnikova AN, Kotsyurbenko OR, Parshina SN (1999) Anaerobic manure treatment under extreme temperature conditions. Water Sci Technol 40:215–221. doi:10.1016/S0273-1223(99)00387-X

    CAS  Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    Article  CAS  Google Scholar 

  • Rademacher A, Zakrzewski M, Schlüter A, Schönberg M, Szczepanowski R, Goesmann A, Pühler A, Klocke M (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol 79:785–799. doi:10.1111/j.1574-6941.2011.01265.x

    Article  CAS  Google Scholar 

  • Raizada N (2004) In: Berichte aus Wassergüte- und Abfallwirtschaft (ed) Application of molecular-biological method for optimization of anaerobic reactors. Technische Universität München, Garching

    Google Scholar 

  • Schönberg M, Linke B (2012) The influence of the temperature regime on the formation of methane in a two-phase anaerobic digestion process. Eng Life Sci 12:1–8. doi:10.1002/elsc.201100062

    Article  Google Scholar 

  • Schutte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380. doi:10.1007/s00253-008-1565-4

    Article  CAS  Google Scholar 

  • Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:341–350. doi:10.1111/j.1574-6941.2007.00283.x

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Wang H, Vuorela M, Keranen AL, Lehtinen TM, Lensu A, Lehtomaki A, Rintala J (2010) Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production. FEMS Microbiol Ecol 72:496–506. doi:10.1111/j.1574-6941.2010.00850.x

    Article  CAS  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940. doi:10.1016/j.biortech.2008.02.044

    Article  CAS  Google Scholar 

  • Wasserfallen A, Nolling J, Pfister P, Reeve J, de Macario EC (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50:43–53

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Wu W-M, Thiele JH, Jain MK, Zeikus JG (1993) Metabolic properties and kinetics of methanogenic granules. Appl Microbiol Biotechnol 39:804–811. doi:10.1007/BF00164470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for A. Rademacher and M. Schönberg was provided by the Federal Ministry of Education and Research (BMBF) through Project Management Jülich (PTJ, grant number 03SF0349C). The authors thank M. Jäkel, C. Jost, M. Felgentreu, C. Krumrei, J. Brunner, and K. Mundt for their valuable technical support. Dr. A. Ulrich, Leibniz Center for Agricultural Landscape Research (ZALF), is gratefully acknowledged for his valuable contributions to the discussion concerning TRFLP analysis and data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klocke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rademacher, A., Nolte, C., Schönberg, M. et al. Temperature increases from 55 to 75 °C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl Microbiol Biotechnol 96, 565–576 (2012). https://doi.org/10.1007/s00253-012-4348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4348-x

Keywords

Navigation