Skip to main content
Log in

A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2′-deoxyuridine (EdU)

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2′-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  • Anderson RE, Brazelton WJ, Baross JA (2011) Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front Microbiol 2:Article 219

  • Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48:6571–6584

    Article  CAS  Google Scholar 

  • Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis BM (2007) Salmonella host range of bacteriophages that infect multiple genera. Poult Sci 86:2536–2540

    Article  CAS  Google Scholar 

  • Breinbauer R, Köhn M (2003) Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry. Chembiochem 4:1147–1149

    Article  CAS  Google Scholar 

  • Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotechniques 44:927–929

    Article  CAS  Google Scholar 

  • Buckley PJ, Kosturko LD, Kozinski AW (1972) In vivo production of an RNA-DNA copolymer after infection of Escherichia coli by bacteriophage T4. Proc Natl Acad Sci USA 69:3165–3169

    Article  CAS  Google Scholar 

  • Carlson K (1973) Multiple initiation of bacteriophage T4 DNA replication: delaying effect of bromodeoxyuridine. J Virol 12:349–359

    CAS  Google Scholar 

  • Chen F, Lu J-R, Binder BJ, Liu Y-C, Hodson RE (2001) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl Environ Microbiol 67:539–545

    Article  CAS  Google Scholar 

  • Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218

    Article  CAS  Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  Google Scholar 

  • Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35:993–1034

    Article  CAS  Google Scholar 

  • Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry 75A:535–546

    Article  CAS  Google Scholar 

  • Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845

    Article  CAS  Google Scholar 

  • Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46:365–369

    CAS  Google Scholar 

  • Furukawa H, Kuroiwa T, Mizushima S (1983) DNA injection during bacteriophage T4 infection of Escherichia coli. J Bacteriol 154:938–945

    CAS  Google Scholar 

  • Goodridge L, Chen J, Griffiths M (1999a) Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl Environ Microbiol 65:1397–1404

    CAS  Google Scholar 

  • Goodridge L, Chen J, Griffiths M (1999b) The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157:H7 in inoculated ground beef and raw milk. Int J Food Microbiol 47:43–50

    Article  CAS  Google Scholar 

  • Hennes KP, Suttle CA (1995) Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol Oceanogr 40:1050–1055

    Article  CAS  Google Scholar 

  • Hennes KP, Suttle CA, Chan AM (1995) Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl Environ Microbiol 61:3623–3627

    CAS  Google Scholar 

  • Hua H, Kearsey SE (2011) Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine. Nucleic Acids Res 39:e60

    Article  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:reviews0003

    Google Scholar 

  • Hyman P, Abedon ST (2010) Chapter 7—bacteriophage host range and bacterial resistance. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advaces in applied microbiology, vol 70. Academic Press, San Diego, CA, USA, pp 217–248

    Google Scholar 

  • Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, Yamaguchi T, Tomaru H, Takeuchi R, Morono Y, Inagaki F, Takai K (2011) Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5:1913–1925

    Article  CAS  Google Scholar 

  • Jacobs WR, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822

    Article  CAS  Google Scholar 

  • Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580

    CAS  Google Scholar 

  • Kenzaka T, Yamaguchi N, Prapagdee B, Mikami E, Nasu M (2001) Bacterial community composition and activity in urban rivers in Thailand and Malaysia. J Health Sci 47:353–361

    Article  CAS  Google Scholar 

  • Kenzaka T, Tani K, Nasu M (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4:648–659

    Article  CAS  Google Scholar 

  • Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18:442–448

    Article  CAS  Google Scholar 

  • Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19

    Article  CAS  Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595

    Article  CAS  Google Scholar 

  • Lee SH, Onuki M, Satoh H, Mino T (2006) Isolation, characterization of bacteriophages specific to Microlunatus phosphovorus and their application for rapid host detection. Lett Appl Microbiol 42:259–264

    Article  CAS  Google Scholar 

  • Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524–531

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  • Matsuzaki S, Tanaka S, Koga T, Kawata T (1992) A broad-host-range vibriophage, KVP40, isolated from sea water. Microbiol Immunol 36:93–97

    CAS  Google Scholar 

  • Miller RC, Taylor DM, MacKay K, Smith HW (1973) Replication of T4 DNA in Escherichia coli treated with toluene. J Virol 12:1195–1203

    CAS  Google Scholar 

  • Miyashita A, Mochimaru H, Kazama H, Ohashi A, Yamaguchi T, Nunoura T, Horikoshi K, Takai K, Imachi H (2009) Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 297:31–37

    Article  CAS  Google Scholar 

  • Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M (2003) Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl Spectrosc 57:1138–1144

    Article  CAS  Google Scholar 

  • Nogami T (2002) Chapter 10 - Bacteriophage method. In: Ito T, Sato J (eds) Rapid detection and measurement techniques for food microbiology. Science Forum, Abiko, Chiba, Japan, pp 215–224 (in Japanese)

    Google Scholar 

  • Oda M, Morita M, Unno H, Tanji Y (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534

    Article  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  Google Scholar 

  • Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333:58–62

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tanji Y, Furukawa C, Na S-H, Hijikata T, Miyanaga K, Unno H (2004) Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol 114:11–20

    Article  CAS  Google Scholar 

  • Tarahovsky YS, Ivanitsky GR, Khusainov AA (1994) Lysis of Escherichia coli cells induced by bacteriophage T4. FEMS Microbiol Lett 122:195–199

    Article  CAS  Google Scholar 

  • Thomas JA, Soddell JA, Kurtböke DÍ (2002) Fighting foam with phages? Water Sci Technol 46:511–518

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Masaru Kawato and Yuto Yashiro for help with flow cytometry techniques; Norika Meguro, Hiromi Kazama, and Masayuki Ehara for the help with 16S rRNA gene analysis; Drs. Kengo Kubota, Myong-Ok Park, Takako Nogami, Hiroshi Tsukamoto, Kazuhiko Miyanaga, Hideki Kobayashi, Tadashi Maruyama, Sanae Sakai, Takuro Nunoura, Aidan J. Synnott, Roland Hatzenpichler, and Jennifer Glass for the helpful discussions and useful comments. We greatly appreciate Professor Hideki Harada for his continuous encouragement. We also thank Yuji Suzuki at the Yokohama city office for his assistance in sampling the Kanazawa-ku municipal sewage treatment plant. This study was partly supported by grants from the Japan Society for the Promotion of Science, and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Imachi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 5036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, S., Okano, H., Tanji, Y. et al. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2′-deoxyuridine (EdU). Appl Microbiol Biotechnol 95, 777–788 (2012). https://doi.org/10.1007/s00253-012-4174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4174-1

Keywords

Navigation