Skip to main content
Log in

Efficient (R)-3-hydroxybutyrate production using acetyl CoA-regenerating pathway catalyzed by coenzyme A transferase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 11 November 2012

Abstract

(R)-3-hydroxybutyrate [(R)-3HB] is a useful precursor in the synthesis of value-added chiral compounds such as antibiotics and vitamins. Typically, (R)-3HB has been microbially produced from sugars via modified (R)-3HB-polymer-synthesizing pathways in which acetyl CoA is converted into (R)-3-hydroxybutyryl-coenzyme A [(R)-3HB-CoA] by β-ketothiolase (PhaA) and acetoacetyl CoA reductase (PhaB). (R)-3HB-CoA is hydrolyzed into (R)-3HB by modifying enzymes or undergoes degradation of the polymerized product. In the present study, we constructed a new (R)-3HB-generating pathway from glucose by using propionyl CoA transferase (PCT). This pathway was designed to excrete (R)-3HB by means of a PCT-catalyzed reaction coupled with regeneration of acetyl CoA, the starting substance for synthesizing (R)-3HB-CoA. Considering the equilibrium reaction of PCT, the PCT-catalyzed (R)-3HB production would be expected to be facilitated by the addition of acetate since it acts as an acceptor of CoA. As expected, the engineered Escherichia coli harboring the phaAB and pct genes produced 1.0 g L−1 (R)-3HB from glucose, and with the addition of acetate into the medium, the concentration was increased up to 5.2 g L−1, with a productivity of 0.22 g L−1 h−1. The effectiveness of the extracellularly added acetate was evaluated by monitoring the conversion of 13C carbonyl carbon-labeled acetate into (R)-3HB using gas chromatography/mass spectrometry. The enantiopurity of (R)-3HB was determined to be 99.2% using chiral liquid chromatography. These results demonstrate that the PCT pathway achieved a rapid co-conversion of glucose and acetate into (R)-3HB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arai Y, Nakashita H, Suzuki Y, Kobayashi Y, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2002) Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes, and their use in monitoring short-chain-length intermediates of β-oxidation. Plant Cell Physiol 43:555–562

    Article  CAS  Google Scholar 

  • de Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722

    Article  Google Scholar 

  • Gao HJ, Wu Q, Chen GQ (2002) Enhanced production of D-(−)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett 213:59–65

    CAS  Google Scholar 

  • Iimori T, Shibasaki M (1986) Simple, stereocontrolled synthesis of 1β-methylcarbapenem antibiotics from 3(R)-hydroxybutyric acid. Tetrahedron Lett 27:2149–2152

    Article  CAS  Google Scholar 

  • Jossek R, Reichelt R, Steinbüchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266

    Article  CAS  Google Scholar 

  • Lee SY, Lee Y (2003) Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(−)-hydroxycarboxylic acids. Appl Environ Microbiol 69:3421–3426

    Article  CAS  Google Scholar 

  • Liu Q, Ouyang SP, Chung A, Wu Q, Chen GQ (2007) Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB. Appl Microbiol Biotechnol 76:811–818

    Article  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  Google Scholar 

  • Ren Q, Ruth K, Thony-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87:41–52

    Article  CAS  Google Scholar 

  • Shiraki M, Endo T, Saito T (2006) Fermentative production of (R)-(−)-3-hydroxybutyrate using 3-hydroxybutyrate dehydrogenase null mutant of Ralstonia eutropha and recombinant Escherichia coli. J Biosci Bioeng 102:529–534

    Article  CAS  Google Scholar 

  • Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327

    Article  CAS  Google Scholar 

  • Tappel RC, Wang Q, Nomura CT (2012) Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli. J Biosci Bioeng 113:480–486

    Article  CAS  Google Scholar 

  • Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132:264–272

    Article  CAS  Google Scholar 

  • Tseng HC, Martin CH, Nielsen DR, Prather KL (2009) Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 75:3137–3145

    Article  CAS  Google Scholar 

  • Tung KK, Wood WA (1975) Purification, new assay, and properties of coenzyme A transferase from Peptostreptococcus elsdenii. J Bacteriol 124:1462–1474

    CAS  Google Scholar 

  • Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063

    Article  CAS  Google Scholar 

  • Ugwu CU, Tokiwa Y, Ichiba T (2011) Production of (R)-3-hydroxybutyric acid by fermentation and bioconversion processes with Azohydromonas lata. Bioresour Technol 102:6766–6768

    Article  CAS  Google Scholar 

  • Vollbrecht D, Schlegel HG (1979) Excretion of metabolites of hydrogen bacteria III. D(−)-3-hydroxybutanoate. Eur J Appl Microbiol 7:259–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Nduko for the technical assistance of HPLC analysis. E. coli strain was provided by National BioResource Project, Japan. This work was financially supported by Showa Denko K. K. (Japan). Pacific Edit reviewed the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken’ichiro Matsumoto or Seiichi Taguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, K., Okei, T., Honma, I. et al. Efficient (R)-3-hydroxybutyrate production using acetyl CoA-regenerating pathway catalyzed by coenzyme A transferase. Appl Microbiol Biotechnol 97, 205–210 (2013). https://doi.org/10.1007/s00253-012-4104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4104-2

Keywords

Navigation