Skip to main content
Log in

Flow cytometric assessment of the protectants for enhanced in vitro survival of probiotic lactic acid bacteria through simulated human gastro-intestinal stresses

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to apply flow cytometric (FCM) analysis to assess the use of sucrose and lecithin vesicles for the protection of probiotic lactic acid bacteria in response to the challenge of gastric acidity and bile salts. FCM analysis in combination with fluorescent probes carboxyfluorescein (cF) and propidium iodide was used to reveal the physiological heterogeneity in the stressed bacteria population. Three subpopulations (intact, stressed, and damaged) were differentiated by FCM in all six examined strains. Significant changes were observed in the presence of the selected protectants. The addition of 20 mM sucrose in the simulated gastric fluid substantially increased the number of intact cells over 20 folds and reduced the damaged subpopulation by half. The presence of 2 % (w/v) lecithin vesicles was shown to protect 50 % more intact cells from the challenge of bile salts. The improved survival as evaluated by FCM analysis was further assessed for the proliferation capacity by sorting a number of cells from each subpopulation on nutrient agar plate. The result confirmed conformity between the proliferation-based cultivability and the probe-indicated viability in the samples of the intact and the damaged subpopulations. However, it also revealed the complexities of the stressed (injured) subpopulation. In conclusion, FCM analysis confirmed that the selected protectants could improve the survival of the probiotic strains in the simulated GI environments. The FCM analysis also proved to be a useful analytical tool for the probiotics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68(11):5209–5216. doi:10.1128/aem.68.11.5209-5216.2002

    Article  Google Scholar 

  • Ananta E, Heinz V, Knorr D (2004) Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiol 21(5):567–577

    Article  CAS  Google Scholar 

  • Ananta E, Knorr D (2009) Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol 26(5):542–546. doi:10.1016/j.fm.2009.01.008

    Article  CAS  Google Scholar 

  • Ananta E, Voigt D, Zenker M, Heinz V, Knorr D (2005) Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. J Appl Microbiol 99(2):271–278. doi:10.1111/j.1365-2672.2005.02619.x

    Article  CAS  Google Scholar 

  • Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651

    Article  CAS  Google Scholar 

  • Bunthof CJ, Bloemen K, Breeuwer P, Rombouts FM, Abee T (2001) Flow cytometric assessment of viability of lactic acid bacteria. Appl Environ Microbiol 67(5):2326–2335

    Article  CAS  Google Scholar 

  • Bunthof CJ, van den Braak S, Breeuwer P, Rombouts FM, Abee T (1999) Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl Environ Microbiol 65(8):3681–3689

    CAS  Google Scholar 

  • Carey MC, Small DM (1970) The characteristics of mixed micellar solutions with particular reference to bile. Am J Med 49(5):590–608. doi:10.1016/S0002-9343(70)80127-9

    Article  CAS  Google Scholar 

  • Charalampopoulos D, Pandiella SS, Webb C (2003) Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int J Food Microbiol 82(2):133–141. doi:10.1016/S0168-1605(02)00248-9

    Article  CAS  Google Scholar 

  • Chen S, Ferguson LR, Shu Q, Garg S (2011) The application of flow cytometry to the characterisation of a probiotic strain Lactobacillus reuteri DPC16 and the evaluation of sugar preservatives for its lyophilisation. LWT- Food Sci Technol 44(9):1873–1879

    Article  CAS  Google Scholar 

  • Chen S, Zhao Q, Ferguson LR, Shu Q, Weir I, Garg S (2012) Development of a novel probiotic delivery system based on microencapsulation with protectants. Appl Microbiol Biotechnol 93(4):1447–1457. doi:10.1007/s00253-011-3609-4

    Article  CAS  Google Scholar 

  • Choi YJC, Lee BL (2001) Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioproc Biosystems Eng 24(1):59–63. doi:10.1007/s004490100233

    Article  CAS  Google Scholar 

  • Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71(6):3060

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67(3):429

    Article  CAS  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15(10):973–988. doi:10.1016/j.idairyj.2004.11.014

    Article  CAS  Google Scholar 

  • Donovan JM, Timofeyeva N, Carey MC (1991) Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. J Lipid Res 32(9):1501–1512

    CAS  Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66(6):2605–2612. doi:10.1128/aem.66.6.2605-2612.2000

    Article  CAS  Google Scholar 

  • Giannella RA, Broitman SA, Zamcheck N (1972) Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13(4):251–256. doi:10.1136/gut.13.4.251

    Article  CAS  Google Scholar 

  • Gobbetti M, Fox PF, Stepaniak L (1997) Isolation and characterization of a tributyrin esterase from Lactobacillus plantarum 2739. J Dairy Sci 80(12):3099–3106. doi:10.3168/jds.S0022-0302(97)76280-5

    Article  CAS  Google Scholar 

  • Hartke A, Bouche S, Gansel X, Boutibonnes P, Auffray Y (1994) Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60(9):3474–3478

    CAS  Google Scholar 

  • Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. BBA-Biomembranes 812(1):55–65

    Article  CAS  Google Scholar 

  • Jacobsen CN, Nielsen VR, Hayford AE, Møller PL, Michaelsen KF, Pærregaard A, Sandström B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65(11):4949–4956

    CAS  Google Scholar 

  • Jin LZ, Ho YW, Abdullah N, Jalaludin S (1998) Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Microbiol 27(3):183–185. doi:10.1046/j.1472-765X.1998.00405.x

    Article  CAS  Google Scholar 

  • Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 46(3):233–244. doi:10.1111/j.1574-6968.1987.tb02463.x

    Article  CAS  Google Scholar 

  • Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43(5):346–350. doi:10.1007/s002840010314

    Article  CAS  Google Scholar 

  • Kramer M, Obermajer N, Matijašić BB, Rogelj I, Kmetec V (2009) Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl Microbiol Biotechnol 84(6):1137–1147

    Article  CAS  Google Scholar 

  • Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188(5):1979–1986. doi:10.1128/jb.188.5.1979-1986.2006

    Article  CAS  Google Scholar 

  • Lahtinen SJ, Ahokoski H, Reinikainen JP, Gueimonde M, Nurmi J, Ouwehand AC, Salminen SJ (2008) Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett Appl Microbiol 46(6):693–698. doi:10.1111/j.1472-765X.2008.02374.x

    Article  CAS  Google Scholar 

  • Lahtinen SJ, Ouwehand AC, Reinikainen JP, Korpela JM, Sandholm J, Salminen SJ (2006) Intrinsic properties of so-called dormant probiotic bacteria, determined by flow cytometric viability assays. Appl Environ Microbiol 72(7):5132–5134. doi:10.1128/aem.02897-05

    Article  CAS  Google Scholar 

  • Leng J, Egelhaaf SU, Cates ME (2003) Kinetics of the micelle-to-vesicle transition: aqueous lecithin–bile salt mixtures. Biophys J 85(3):1624–1646

    Article  CAS  Google Scholar 

  • Lorca GL, Font de Valdez G (2001) Acid tolerance mediated by membrane ATPases in Lactobacillus acidophilus. Biotechnol Lett 23(10):777–780

    Article  CAS  Google Scholar 

  • Madenci D, Egelhaaf SU (2010) Self-assembly in aqueous bile salt solutions. Curr Opin Colloid Interface Sci 15(1–2):109–115

    Article  CAS  Google Scholar 

  • Nichols JW, Ozarowski J (1990) Sizing of lecithin–bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry 29(19):4600–4606. doi:10.1021/bi00471a014

    Article  CAS  Google Scholar 

  • Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300(1):57–62

    Article  CAS  Google Scholar 

  • Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9(1):43–52. doi:10.1016/S0958-6946(99)00043-6

    Article  Google Scholar 

  • Ouwehand AC, Tölkkö S, Salminen S (2001) The effect of digestive enzymes on the adhesion of probiotic bacteria in vitro. J Food Sci 66(6):856–859. doi:10.1111/j.1365-2621.2001.tb15186.x

    Article  CAS  Google Scholar 

  • Papadimitriou K, Pratsinis H, Nebe-von-Caron G, Kletsas D, Tsakalidou E (2006) Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescence probes. Int J Food Microbiol 111(3):197–205. doi:10.1016/j.ijfoodmicro.2006.04.042

    Article  CAS  Google Scholar 

  • Papadimitriou K, Pratsinis H, Nebe-von-Caron G, Kletsas D, Tsakalidou E (2007) Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting. Appl Environ Microbiol 73(2):465–476. doi:10.1128/aem.01244-06

    Article  CAS  Google Scholar 

  • Pártay LB, Sega M, Jedlovszky P (2008) A two-step aggregation scheme of bile acid salts, as seen from computer simulations. Colloids for Nano-and Biotechnology 135:181–187

    Google Scholar 

  • Rault A, Béal C, Ghorbal S, Ogier J-C, Bouix M (2007) Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 55(1):35–43. doi:10.1016/j.cryobiol.2007.04.005

    Article  CAS  Google Scholar 

  • Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71A(8):592–598. doi:10.1002/cyto.a.20402

    Article  Google Scholar 

  • Sträuber H, Müller S (2010) Viability states of bacteria—specific mechanisms of selected probes. Cytometry A 77A(7):623–634. doi:10.1002/cyto.a.20920

    Article  Google Scholar 

  • Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14(11):1585–1596. doi:10.1002/ibd.20525

    Article  Google Scholar 

  • Wang X, Geng X, Egashira Y, Sanada H (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl Environ Microbiol 70(4):2367–2372. doi:10.1128/aem.70.4.2367-2372.20047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Technology for Industry Fellowship (TIF) New Zealand grant DPAC0702 and by the Drapac Trust, New Zealand. We thank the team of Food Safety & Preservation—Plant and Food Research, the team of AnQual Lab—the University of Auckland, and Ms. Vivien Zhang for their kind help and emotional support throughout the project. We are also grateful for Mrs. Amanda Collocott’s kind help on critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Cao, Y., Ferguson, L.R. et al. Flow cytometric assessment of the protectants for enhanced in vitro survival of probiotic lactic acid bacteria through simulated human gastro-intestinal stresses. Appl Microbiol Biotechnol 95, 345–356 (2012). https://doi.org/10.1007/s00253-012-4030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4030-3

Keywords

Navigation