Skip to main content

Advertisement

Log in

Biofiltration of fugitive methane emissions from landfills using scum from municipal wastewater treatment plants as alternative substrate

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Biofilters have been recognized as a key technology in the mitigation of greenhouse gases (GHG) emitted by landfills. This study aimed to evaluate the methane (an important GHG) oxidation efficiencies of two experimental biofilters at the municipal landfill of Guarapuava (Brazil) under normal conditions (control column), just using landfill cover soil with low organic matter content, and improved, exploiting dried scum from municipal wastewater treatment plant mixed with the cover soil (enriched column, with a high organic matter content). The influence of parameters such as the methane inlet loading rates (22 and 44 gCH4.m−2.d−1), temperatures, methane concentration in the raw biogas, carbon/nitrogen ratio and moisture content of the packing materials on the oxidation of methane was also evaluated during 25 campaigns. The campaigns with the lowest methane loading rates applied to the biofilters showed the best methane oxidation efficiencies (98.4 and 89.5% in the enriched and control columns, respectively) as compared to campaigns with a higher load (92.6 and 82.6% in the enriched and control columns, respectively). In addition to the loading rates, the methane oxidation efficiencies were highly influenced by the organic matter content and C/N ratio of the packing materials evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GDL:

Gas distribution layer

MSW:

Municipal solid waste

GHG:

Greenhouse gases

STP:

Standard temperature and pressure

LFG:

Landfill gas

SWWTP:

Scum from municipal wastewater treatment plant

LR:

Loading rate

WHC:

Water holding capacity

References

  1. Albanna M, Fernandes L (2009) Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. J Hazard Toxic Radioact Waste. https://doi.org/10.1061/(ASCE)1090-025X(2009)13:3(187)

    Article  Google Scholar 

  2. United States Environmental Protection Agency – USEPA (2013) Global mitigation of non-CO2 greenhouse gases: 2010–2030. EPA-430-R-13–011, Washington DC.

  3. Maciel FJ, Jucá JFT (2011) Evaluation of landfill gas production and emissions in a MSW large-scale experimental cell in Brazil. Waste Manag. https://doi.org/10.1016/j.wasman.2011.01.030

    Article  Google Scholar 

  4. United States Environmental Protection Agency – USEPA (2009) Technical support document for the landfill sector: proposed rule for mandatory reporting of greenhouse gases. https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/tsd_landfills_ epa_02_04_09_2.pdf. Accessed 25 November 2020

  5. United States Environmental Protection Agency – USEPA (2011) Available and emerging technologies for reducing greenhouse gas emissions from municipal solid waste landfills. https://www.epa.gov/sites/production/files/2015-12/documents/landfills.pdf. Accessed 26 November 2020

  6. Cabral AR, Moreira JFV, Jugnia L-B (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000182

    Article  Google Scholar 

  7. Kormi T, Mhadhebi S, Bel Hadj Ali N, Abichou T, Green R (2018) Estimation of fugitive landfill methane emissions using surface emission monitoring and genetic algorithms optimization. Waste Manag. https://doi.org/10.1016/j.wasman.2016.11.024

    Article  Google Scholar 

  8. Mønster J, Kjeldsen P, Scheutz C (2019) Methodologies for measuring fugitive methane emissions from landfills—a review. Waste Manag. https://doi.org/10.1016/j.wasman.2018.12.047

    Article  Google Scholar 

  9. Rachor I, Streese-Kleeberg J, Gebert J (2009) Spatial and temporal variability of gas emissions from old landfills. Proceedings Sardinia, twelfth international waste management and landfill symposium, Cagliari, Italy

  10. Bogner J, Meadows M, Czepiel P, Smith K (1997) Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag. https://doi.org/10.1111/j.1475-2743.1997.tb00598.x

    Article  Google Scholar 

  11. Gámez AFC, Maroto JMR, Pérez IV (2019) Quantification of methane emissions in a Mediterranean landfill (Southern Spain). A combination of flux chambers and geostatistical methods. Waste Manag. https://doi.org/10.1016/j.wasman.2018.12.015

    Article  Google Scholar 

  12. Röwer IU, Geck C, Gebert J, Pfeiffer E-M (2011) Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers. Waste Manag. https://doi.org/10.1016/j.wasman.2010.09.013

    Article  Google Scholar 

  13. Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag. https://doi.org/10.1016/S0956-053X(03)00105-3

    Article  Google Scholar 

  14. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res. https://doi.org/10.1177/0734242X07087977

    Article  Google Scholar 

  15. Kjeld A (2013) Microbial methane oxidation at the Fíflholt landfill in Iceland. Thesis, faculty of civil and environmental engineering, university of Iceland, Reykjavik, Iceland

  16. Majdinasab A, Yuan Q (2017) Performance of the biotic systems for reducing methane emissions from landfill sites: a review. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2017.04.015

    Article  Google Scholar 

  17. Menard C, Ramirez AA, Nikiema J, Heitz M (2012) Biofiltration of methane and trace gases from landfills: a review. Environ Rev. https://doi.org/10.1139/a11-022

    Article  Google Scholar 

  18. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-013-9325-z

    Article  Google Scholar 

  19. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res. https://doi.org/10.1177/0734242X09339325

    Article  Google Scholar 

  20. Abushammala MFM, Basri NEA, Irwan D, Younes MK (2014) Methane oxidation in landfill cover soils: a review. Asian J Atmos Environ. https://doi.org/10.5572/ajae.2014.8.1.001

    Article  Google Scholar 

  21. IPCC (2007). In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 27–93

    Google Scholar 

  22. Ahoughalandari B, Cabral AR, Leroueil S (2018) Elements of design of passive methane oxidation biosystems: fundamental and practical considerations about compaction and hydraulic characteristics on biogas migration. Geotech Geol Eng. https://doi.org/10.1007/s10706-018-0485-z

    Article  Google Scholar 

  23. La H, Hettiaratchi JPA, Achari G, Dunfield PF (2018) Biofiltration of methane. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.07.043

    Article  Google Scholar 

  24. Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol. https://doi.org/10.1016/j.femsec.2004.02.006

    Article  Google Scholar 

  25. Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old lanfills. Waste Manag Res. https://doi.org/10.1177/0734242X9901700607

    Article  Google Scholar 

  26. Lee Y-Y, Jung H, Ryu H-W, Oh K-C, Jeon J-M, Cho K-S (2018) Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag. https://doi.org/10.1016/j.wasman.2017.10.037

    Article  Google Scholar 

  27. Ndanga EM, Bradley RL, Cabral AR (2015) Does vegetation affect the methane oxidation efficiency of passive biosystems? Waste Manag. https://doi.org/10.1016/j.wasman.2015.01.031

    Article  Google Scholar 

  28. Franqueto R, Cabral AR, Capanema MA, Schirmer WN (2019) Fugitive methane emissions from two experimental biocovers constructed with tropical residual soils: field study using a large flux chamber. Detritus. https://doi.org/10.31025/2611-4135/2019.13844

    Article  Google Scholar 

  29. Kettunen RH, Einola J-KM, Rintala JA (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Pollut. https://doi.org/10.1007/s11270-006-9176-0

    Article  Google Scholar 

  30. Pariatamby A, Cheah WY, Shrizal R, Thamlarson N, Lim BT, Barasarathi J (2015) Enhancement of landfill methane oxidation using different types of organic wastes. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3600-3

    Article  Google Scholar 

  31. Van Lith C, Leson G, Michelsen R (1997) Evaluating design options for biofilters. J Air Waste Manag. https://doi.org/10.1080/10473289.1997.10464410

    Article  Google Scholar 

  32. Bender M, Conrad R (1995) Effect of CH4, concentrations and soil conditions on the induction of CH4, oxidation activity. Soil Biol Biochem. https://doi.org/10.1016/0038-0717(95)00104-M

    Article  Google Scholar 

  33. Huber-Humer M, Röder S, Lechner P (2009) Approaches to assess biocover performance on landfills. Waste Manag. https://doi.org/10.1016/j.wasman.2009.02.001

    Article  Google Scholar 

  34. Shangari GS, Agamuthu P (2012) Enhancing methane oxidation in landfill cover using brewery spent grain as Biocover. Malays J Sci. https://doi.org/10.22452/mjs.vol31no2.8

    Article  Google Scholar 

  35. Capanema MA, Cabral AR (2012) Evaluating methane oxidation efficiencies in experimental landfill biocovers by mass balance and carbon stable isotopes. Water Air Soil Pollut. https://doi.org/10.1007/s11270-012-1302-636

    Article  Google Scholar 

  36. Fedrizzi F, Cabana H, Ndanga ÉM, Cabral AR (2018) Biofiltration of methane from cow barns: effects of climatic conditions and packing bed media acclimatization. Waste Manag. https://doi.org/10.1016/j.wasman.2018.06.03837

    Article  Google Scholar 

  37. Berger J, Fornés LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag. https://doi.org/10.1016/j.wasman.2005.02.005

    Article  Google Scholar 

  38. Scheutz C, Pedersen RB, Petersen PH, Jørgensen JHB, Ucendo IMB, Mønster JG, Samuelsson J, Kjeldsen P (2014) Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. https://doi.org/10.1016/j.wasman.2014.03.015

    Article  Google Scholar 

  39. Fiuza TER, Souza ECF, Antunes SRM, Costa W, Arrúa MEP, Antunes AC (2017) Avaliação da utilização das cinzas da escuma gerada em reator anaeróbico de manta de lodo e fluxo ascendente como pigmento inorgânico de coloração alaranjada. Eng Sanit Ambient. https://doi.org/10.1590/S1413-41522017158707 (in Portuguese)

    Article  Google Scholar 

  40. Von Sperling M (2007) Overview of sludge treatment and disposal (Ch. 05). Wastewater characteristics, treatment and disposal. IWA Publishing, London

    Google Scholar 

  41. Guarapuava (2017) Plano municipal de saneamento básico – Município de Guarapuava-PR: diagnóstico e plano de metas. http://www.concidade.com.br/concidade/download /planos_municipais/Plano_Municipal_de_Saneamento_Guarapuava_2018_2021_versao_audiencia.pdf. Accessed 08 January 2020 (in Portuguese)

  42. Brazilian Institute of Geography and Statistics – IBGE (2020) Cities and States - Guarapuava. https://www.ibge.gov.br/en/cities-and-states/pr/guarapuava.html. Accessed 09 December 2020

  43. Instituto de Desenvolvimento Rural do Paraná (IDR): Solicitação de dados meteorológicos – UNICENTRO [personal message] Received by <sam@idr.pr.gov.br> on 10 June 2020

  44. Cantarella H, Quaggio JA, Raij BV (2001) Determinação de matéria orgânica. In: Raij BV, Andrade JC, Cantarella H, Quaggio JA Análise Química para Avaliação da Fertilidade de Solos Tropicais. Instituto Agronômico, Campinas (in Portuguese)

  45. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. https://doi.org/10.1097/00010694-193401000-00003

    Article  Google Scholar 

  46. Cantarella H, Trivelin PCO (2001) Determinação de nitrogênio total em solo. In: Raij BV, Andrade JC, Cantarella H, Quaggio JA Análise Química para Avaliação da Fertilidade de Solos Tropicais Instituto Agronômico, Campinas (in Portuguese)

  47. Quaggio JA, Raij BV (2001) Determinação do pH em cloreto de cálcio e da acidez total. In: Raij BV, Andrade JC, Cantarella H, Quaggio JA Análise Química para Avaliação da Fertilidade de Solos Tropicais. Instituto Agronômico, Campinas (in Portuguese)

  48. Ross BZL (2015) Escuma de reatores anaeróbios tratando esgotos domésticos em escala real: produção, caracterização e proposição de parâmetros para seu gerenciamento. Thesis, Postgraduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Brazil (in Portuguese)

  49. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. CRC Lewis Publishers, Boca Raton

    Google Scholar 

  50. Mann DD, DeBruyn JC, Zhang Q (2002) Design and evaluation of an open biofilter for treatment of odor from swine barns during sub-zero ambient temperatures. Can Biosyst Eng 44:21–26

    Google Scholar 

  51. Schmidt D, Jacobson L, Nicolai R. (2020). Biofilter design information. Agriculture, food and natural resources, University of Minnesota. https://conservancy.umn.edu/handle/11299/212362. Accessed 13 June 2022

  52. RStudio Team: RStudio (2020) Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  53. Bernai MP, Paredes C, Sánchez-Monedero MA, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol. https://doi.org/10.1016/S0960-8524(97)00084-9

    Article  Google Scholar 

  54. Han J-S, Mahanty B, Yoon S-U, Kim C-G (2016) Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent. Geomicrobiol J. https://doi.org/10.1080/01490451.2015.1123330

    Article  Google Scholar 

  55. Huang Q, Zhang Q, Cicek N, Mann D (2011) Biofilter: a promising tool for mitigating methane emission from manure storage. J Arid Land. https://doi.org/10.3724/SP.J.1227.2011.00061

    Article  Google Scholar 

  56. Rose JL, Mahler CF, Izzo RLS (2012) Comparison of the methane oxidation rate in four media. Rev Bras Ciênc Solo. https://doi.org/10.1590/S0100-06832012000300011

    Article  Google Scholar 

  57. Bohn HL, Bohn KH (1999) Moisture in biofilters. Environ Prog. https://doi.org/10.1002/ep.670180311

    Article  MATH  Google Scholar 

  58. Brandt EMF, Duarte FV, Vieira JPR, Melo VM, Souza CL, Araújo JC, Chernicharo CAL (2016) The use of novel packing material for improving methane oxidation in biofilters. J Environ Manag. https://doi.org/10.1016/j.jenvman.2016.07.075

    Article  Google Scholar 

  59. Ferdowsi M, Veillette M, Ramirez AA, Jones JP, Heitz M (2016) Performance evaluation of a methane biofilter under steady state, transient state and starvation conditions. Water Air Soil Pollut. https://doi.org/10.1007/s11270-016-2838-7

    Article  Google Scholar 

  60. Nikiema J, Heitz M (2009) The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Can J Chem Eng. https://doi.org/10.1002/cjce.20131

    Article  Google Scholar 

  61. Park S, Lee C-H, Ryu C-R, Sung K (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut. https://doi.org/10.1007/s11270-008-9754-4

    Article  Google Scholar 

  62. Kraakman NJR, Rocha-Rios J, Van Loosdrecht MCM (2011) Review of mass transfer aspects for biological gas treatment. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-011-3365-5

    Article  Google Scholar 

  63. Einola J-KM, Karhu AE, Rintala JA (2008) Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag. https://doi.org/10.1016/j.wasman.2007.01.002

    Article  Google Scholar 

  64. Mei C, Yazdani R, Han B, Mostafid ME, Chanton J, VanderGheynst J, Imhoff P (2015) Performance of green waste biocovers for enhancing methane oxidation. Waste Manag. https://doi.org/10.1016/j.wasman.2015.01.042

    Article  Google Scholar 

  65. Van Tienen YMS, de Lima GM, Mazur DL, Martins KG, Stroparo EC, Schirmer WN (2021) Methane oxidation biosystem in landfill fugitive emissions using conventional cover soil and compost as alternative substrate—a field study. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-021-02179-9

    Article  Google Scholar 

  66. Cooper CD, Reinhart DR, Rash F, Seligman D, Keely D (1992) Landfill gas emissions. Report #92–2. Civil and environmental engineering department. University of Central Florida, Orlando, USA.

  67. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol. https://doi.org/10.1021/es980004s

    Article  Google Scholar 

  68. Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation—a review. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2011.07.005

    Article  Google Scholar 

  69. Gebert J, Röwer IU, Scharff H, Roncato CDL, Cabral AR (2011) Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Manag. https://doi.org/10.1016/j.wasman.2010.10.008

    Article  Google Scholar 

  70. Ait-Benichou S, Jugnia L-B, Greer CW, Cabral AR (2009) Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. https://doi.org/10.1016/j.wasman.2009.05.005

    Article  Google Scholar 

  71. Czepiel PM, Crill PM, Harriss RC (1995) Environmental factors influencing the variability of methane oxidation in temperate zone soils. J Geophys Res. https://doi.org/10.1029/95JD00542

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) and “Fundação Araucária do Paraná” (Call nº 09/2016) for their financial support. They are also grateful to the Guarapuava City Hall (State of Parana, Brazil).

Funding

Fundação Araucária, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldir Nagel Schirmer.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirmer, W.N., Stroparo, E.C., Gueri, M.V.D. et al. Biofiltration of fugitive methane emissions from landfills using scum from municipal wastewater treatment plants as alternative substrate. J Mater Cycles Waste Manag 24, 2041–2053 (2022). https://doi.org/10.1007/s10163-022-01468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01468-9

Keywords

Navigation