Skip to main content
Log in

Updates on naringinase: structural and biotechnological aspects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Naringinases has attracted a great deal of attention in recent years due to its hydrolytic activities which include the production of rhamnose, and prunin and debittering of citrus fruit juices. While this enzyme is widely distributed in fungi, its production from bacterial sources is less commonly known. Fungal naringinase are very important as they are used industrially in large amounts and have been extensively studied during the past decade. In this article, production of bacterial naringinase and potential biotechnological applications are discussed. Bacterial rhamnosidases are exotype enzymes that hydrolyse terminal non-reducing α-l-rhamnosyl groups from α-l-rhamnose containing polysaccharides and glycosides. Structurally, they are classified into family 78 of glycoside hydrolases and characterized by the presence of Asp567 and Glu841 in their active site. Optimization of fermentation conditions and enzyme engineering will allow the development of improved rhamnosidases for advancing suggested industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avila M, Jaquet M, Moine D, Requena T, Palaez C, Arigoni F (2009) Physiological and biochemical characterization of the two rhamnosidase of Lactobacillus plantarum. Microbiology 155:2739–2749

    Article  CAS  Google Scholar 

  • Beekwilder J, Marcozzi D, Vecchi S, deVos R, Janssen P, Francke C, Hall RD (2009) Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. App Environ Microbiol 75:3447–3454

    Article  CAS  Google Scholar 

  • Birgisson H, Wheat JO, Hreggvidsson GO, Kristjansson JK, Mattiason B (2004) Immobilization of a recombinant E. coli producing a thermostable rhamnosidase: creation of a bioreactor for hydrolysis of naringin. Enz Microb Technol 40:1181–1187

    Article  Google Scholar 

  • Bok S, Jeong T, Bae KH (2000) Narigin and naringenin as inhibitors of acyl coA-cholesterol-o-acyltransferase. US Patent 6(165):984

    Google Scholar 

  • Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137–143

    Article  CAS  Google Scholar 

  • Bourbouze R, Percheron F, Courtois JE (1976) a-l-rhamnosidase from Fagopyrum esculentum: purification and some properties. Eur J Biochem 63:331–337

    Article  CAS  Google Scholar 

  • Bouriche H, Arnhold J (2010) Effect of Cleome arabica leaf extract treated by naringinase on human neutrophil chemotaxis. Nat Prod Commun 5:415–418

    CAS  Google Scholar 

  • Bram B, Solomons GL (1965) Production of the enzyme naringinase by Aspergillus niger. Appl Environ Microbiol 13:842–845

    CAS  Google Scholar 

  • Busto MD, Meza V, Ortega N, Perez-Mateos M (2007) Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of fruit juices. Food Chem 104:1177–1182

    Article  CAS  Google Scholar 

  • Cardona ST, Mueller CL, Valvano MA (2006) Identification of essential operons with a rhamnose inducible promoter in Burkholderia cenocepacia. App Environ Microbiol 72:2547–2555

    Article  CAS  Google Scholar 

  • Chang HY, Lee YB, Bae HA, Huh JY, Nam SH, Sohn HS, Lee HJ, Lee SB (2011) Purification and characterization of Aspergillus sojae naringinase: the production of pruning exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chem 124:234–241

    Article  CAS  Google Scholar 

  • Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K (2006) Crystallization and preliminary crystallographic analysis of the family GH 78 α-L-rhamnosidase RhaB from Bacillus sp. GL1. Acta Cryst F62:646–648

    CAS  Google Scholar 

  • Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K (2007) Crystal structure of glycoside hydrolase family 78 α-l-rhamnosidase from Bacillus sp. GL1. J Mol Biol 374:384–398

    Article  CAS  Google Scholar 

  • Davis DW (1947) Determination of flavonones in citrus juice. Anal Chem 19:46–48

    Article  Google Scholar 

  • Ferreira L, Afonso C, Vila-Real H, Alfaia A, Ribeiro MHL (2008) Debittering of grapefruit juice with naringinase. Food Technol Biotechnol 46:144–148

    Google Scholar 

  • Fukumoto J, Okada S (1973) Naringinase production by fermentation. Japanese Patent 7(306):554

    Google Scholar 

  • Gallego MV, Pinaga F, Ramon D, Valles S (2001) Production and characterization of an Aspergillus terreus α-l-rhamnosidase of oenological interest. J Food Sci 66:204–209

    Article  CAS  Google Scholar 

  • Garnier P, Wang XT, Robinson MA, Perkins AC, Frier M, Davis BG (2010) Lectin directed enzyme activated prodrug therapy: synthesis and evaluation of rhamnose capped prodrugs. J Drug Targeting 18:794–802

    Article  CAS  Google Scholar 

  • Gaston Orillo A, Ledesmaa P, Delgadoa OD, Spagna G, Breccia JD (2007) Cold-active α-l-rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enz Microbiol Technol 40:236–241

    Article  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gums. Crit Rev Biotech 20:177–211

    Article  CAS  Google Scholar 

  • Habelt K, Pittner F (1983) A rapid method for the determination of naringin, prunin and naringenin applied to the assay of naringinase. Anal Biochem 134:393–397

    Article  CAS  Google Scholar 

  • Hall D (1938) A new enzyme of the glycosidase type. Chem Ind 57:473

    Article  Google Scholar 

  • Han X, Ren D, Fan P, Shen T, Lou H (2008) Protective effects of narigenin-7-O-glucoside on doxorubicin induced apoptosis in H9C2 cells. Eur J Pharmacol 581:47–53

    Article  CAS  Google Scholar 

  • Hashimoto W, Murata K (1998) Alpha-l-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Biosci Biotechnol Biochem 62:1068–1074

    Article  CAS  Google Scholar 

  • Hashimoto W, Miyake O, Nankai H, Murata K (2003) Molecular identification of a α-l-rhamnosidase from Bacillus sp. strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophy 415:235–244

    Article  CAS  Google Scholar 

  • Jang IS, Kim DH (1996) Purification and characterization of alpha-l-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biol Pharm Bull 19:1546–1549

    Article  CAS  Google Scholar 

  • Kamiya S, Esaki S, Tanaka R (1985) Synthesis of some disaccharides containing an l-rhamnopyranosyl or l-mannopyranosyl residue, and the substrate specificity of alpha-l-rhamnosidase from Aspergillus niger. Agric Biol Chem 49:55–62

    Article  CAS  Google Scholar 

  • Kaul T, Middleton E, Ogra PL (1985) Antiviral effects of flavonoids on human viruses. J Med Virol 15:71–79

    Article  CAS  Google Scholar 

  • Kaur A, Singh RS, Puri M (2009) Strengthening of rec-rhamnosidase enhances naringin hydrolysis. J Punjab Academy Sciences 5–6:129–131

    Google Scholar 

  • Kaur A, Singh S, Singh RS, Schwarz WH, Puri M (2010) Hydrolysis of citrus peel naringin by recombinant α-l-rhamnosidase from Clostridium stercorarium. J Chem Technol Biotechnol 85:1419–1422

    Article  CAS  Google Scholar 

  • Koseki T, Mese Y, Nishibori N, Masaki K, Fuhii T, Handa T, Yamane Y, Shiono Y, Murayama T, iefuji H (2008) Characterization of an α-l-rhamnosidase from Aspergillus kawachii. Appl Microbiol Biotechnol 80:1007–1013

    Article  CAS  Google Scholar 

  • Kumar V (2010) Compartive studies on inducers in the production of naringinase from Aspergillus niger MTCC 1344. Afr J Biotechnol 9:7683–7686

    Google Scholar 

  • Kurosawa Y, Ikeda K, Egami F (1973) a-l-rhamnosidase of the liver of Turbo cornutus and Aspergillus niger. J Biochem 73:31–37

    CAS  Google Scholar 

  • Lei S, Xu Y, Fan G, Xiao M, Pan S (2011) Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit. Appl Surface Sci 257:4096–4099

    Article  CAS  Google Scholar 

  • Li L, Ni H, Xiao A, Cai H (2010) Characterization of Cryptococcus sp. jmudeb008 and regulation of naringinase activity by glucose. Wei Sheng Wu Xue Bao 50:1202–1207

    CAS  Google Scholar 

  • Magario I, Neumann A, Oliveros E, Syldatk C (2009) Kinetic analysis and modeling of the liquid–liquid conversion of emulsified di-rhamnolipid by naringinase from P. decumbens. Biotechnol Bioeng 102:9–19

    Article  CAS  Google Scholar 

  • Mamma D, Kalogeris E, Kekos D, Macris BJ, Christakopoulus P (2004) Biochemical characterization of the multi-enzyme system produced by P. decumbens grown on ruitn. Food Biotechnol 18:1–18

    Article  CAS  Google Scholar 

  • Manzanares P, de Graaff LH, Visser J (1997) Production and characterization of an α-l-rhamnosidase from Aspergillus niger. FEMS Microbiol Lett 157:279–283

    Article  CAS  Google Scholar 

  • Manzanares P, van den Broeck H, de Graaff LH, Visser J (2001) Purification and characterization of two different α-l-rhamnosidase, RhaA and RhaB from Aspergillus aculeatus. Appl Environ Microbiol 67:2230–2234

    Article  CAS  Google Scholar 

  • Manzanares P, Valles S, Ramon D, Orejas M (2007) α-l-rhamnosidase: old and new insights. In: Polaina Julio, McCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, Dordrecht, pp 117–140

    Google Scholar 

  • Mazzaferro LS, Orrillo GA, Ledesma P, Breccia JD (2008) Dose-dependent significance of monosaccharides on intracellular α-l-rhamnosidase activity from Pseudoalteromonas sp. Biotech Letts 30:2147–2150

    Article  CAS  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanism of enzymatic glycoside hydrolysis. Curr Opinion Struct Biol 4:885–892

    Article  CAS  Google Scholar 

  • McMahon H, Zoecklein BW, Fugelsang K, Jasinski Y (1999) Quantification of glycosidase activity in selected yeasts and lactic acid bacteria. J Ind Microbiol Biotechnol 23:198–203

    Article  CAS  Google Scholar 

  • Miake F, Satho T, Takesue H, Yanagida F, Kashige N, Watanabe K (2000) Purification and characterization of intracellular alpha-l-rhamnosidase from Pseudomonas paucimobilis FP2001. Arch Microbiol 173:65–70

    Article  CAS  Google Scholar 

  • Michlmayr H, Brandes W, Eder R, Schumann C, Hierro AM, Kulbe KD (2011) Characterization of two distinct GH family 78a-l-rhmanosidases from Pedicococcus acidilactici. Appl Environ Microbiol (in press; doi:10.1128/AEM.05317-11)

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miyata T, Kashige N, Satho T, Yamaguchi T, Aso Y, Miake F (2005) Cloning, sequence analysis and expression of the gene encoding Sphingomonas paucimobilis FP 2001 rhamnosidase. Current Microbiol 51:105–109

    Article  CAS  Google Scholar 

  • Nunes MA, Vila-Real H, Fernandes PC, Ribeiro MHL (2010) Immobilization of naringinase in PVA-alginate matrix using an innovative technique. Appl Biochem Biotechnol 160:2129–2147

    Article  CAS  Google Scholar 

  • Orejas M, Ibanez E, Ramon D (1999) The filamentous fungus Aspergillus nidulans produces an α-l-rhamnosidase of potential oenological interest. Lett Appl Microbiol 28:383–388

    Article  CAS  Google Scholar 

  • Perez-Vizcaino F, Duarte J (2010) Flavanols and cardiovascular disease. Molecular Aspects of Medicine 31:478–494

    Article  CAS  Google Scholar 

  • Prakash S, Singhal RS, Kulkarni PR (2002) Enzymic debittering of Indian grapefruit (Citrus paradis) juice. J Sci Food Agric 82:394–397

    Article  CAS  Google Scholar 

  • Puri M, Banerjee UC (2000) Production, purification and characterization of the debittering enzyme naringinase. Biotechnol Adv 18:207–217

    Article  CAS  Google Scholar 

  • Puri M, Kaur A (2010) Molecular identification of Staphylococcus xylosus MAK2, a new l-rhamnosidase producer. W J Microbiol Biotechnol 26:963–968

    Article  CAS  Google Scholar 

  • Puri M, Banerjee A, Banerjee UC (2005) Optimization of process parameters for the production of naringinase by Aspergillus niger MTCC 1344. Process Biochem 40:195–201

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Singh RS, Kanwar JR (2008) Immobilized enzymes for debittering citrus fruit juices, In: Busto MD, Ortega N (eds) Food Enzymes: Application of New Technologies, Transworld Research Network. Trivandrum, India, pp 91–103

  • Puri M, Kaur A, Singh RS, Schwarz WH, Kaur A (2010a) One step purification and immobilization of His-tagged rhamnosidase for narigin hydrolysis. Process Biochem 45:445–451

    Article  Google Scholar 

  • Puri M, Kaur A, Singh RS, Nahar A (2010b) Response surface optimization for the production of naringinase from Staphlococcus xylosus MAK2. Applied Biochem Biotechnol 162:181–191

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Barrow CJ, Singh RS (2011a) Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK 2. Appl Microbiol Biotechnol 89:715–722

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Schwarz WH, Kennedy JF (2011b) Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int J Biol Macromol 48:58–62

    Article  CAS  Google Scholar 

  • Qian S, Yu H, Zhang C, Lu M, Wang H, Jin F (2005) Purification and characterization of dioscin-α-l-rhamnosidase from pig liver. Chem Pharm Bull 53:911–914

    Article  CAS  Google Scholar 

  • Rajal VB, Cid AG, Ellenrieder G, Cuevas C (2009) Production, partial purification and characterization of rhamnosidase from Penicillium ulaiense. W J Microbiol Biotechnol 25:1025–1033

    Article  CAS  Google Scholar 

  • Ribeiro MH (2011) Naringinases: occurrences, characteristics and applications. Appl Microbiol Biotechnol 90:1883–1895

    Article  CAS  Google Scholar 

  • Ribeiro IAC, Ribeiro MHL (2008) Kinetic modeling of naringin hydrolysis using a bitter sweet α-rhamnopyranoside immobilized in k-carragennan. J Mol Cat B Enz 51:10–18

    Article  CAS  Google Scholar 

  • Robinson MA, Charlton ST, Garnier P, Wang X, Davis SS (2004) LEAPT: lectin directed enzyme-activated prodrug therapy. Proc Nat Acad Sci 40:14527–14532

    Article  Google Scholar 

  • Rodriguez ME, Lopez CA, van Broock M, Valles S, Ramon D, Caballero AC (2004) Screening and typing of patagonian wine yeasts for glycosidase activities. J Appl Microbiol 96:84–95

    Article  CAS  Google Scholar 

  • Roitner M, Schalkhammer T, Pittner F (1984) Preparation of prunin with the help of immobilized naringinase pretreated with alkaline buffer. App Biochem Biotechnol 9:483–488

    Article  CAS  Google Scholar 

  • Romero C, Manjon A, Bastida J, Iborra JL (1985) A method for the assaying rhamnosidase activity of naringinase. Anal Biochem 149:566–571

    Article  CAS  Google Scholar 

  • Scaroni E, Cuevas C, Carrrillo L, Ellenrieder G (2002) Hydrolytic properties of crude α-l-rhamnosidase produced by several wild strains of mesophillic fungi. Lett Appl Microbiol 34:461–465

    Article  CAS  Google Scholar 

  • Shanmugam V, Yadav KDS (1995) Extracellular production of alpha-rhamnosidase by Rhizopus nigricans. Ind J Exp Biol 33:705–707

    CAS  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  • Suzuki H (1962) Hydrolysis of flavonoid glycosides by enzymes from Rhamnus and other sources. Arch Biochem Biophys 99:476–483

    Article  CAS  Google Scholar 

  • Thammawat K, Pongtanya P, Juntharasari V, Wongvithoonyaporn P (2008) Isolation, preliminary enzyme characterization and optimization of culture parameters for the production of naringinase isolated from Aspergillus niger BCC25166. Kaestsart J Nat Sci 42:61–72

    CAS  Google Scholar 

  • Thirkettle J (2000) SB-253514 and analogues novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens M11579. III. Biotransformation using naringinase. J Antibiot 53:733–735

    Article  CAS  Google Scholar 

  • Thomas DW, Smythe CV, Labbee MD (1958) Enzymatic hydrolysis of naringin, the bitter principle of grapefruit. Food Res 23:591–598

    CAS  Google Scholar 

  • Ting SV (1958) Enzymatic hydrolysis of naringin in grapefruit. J Agric Food Chem 6:546–549

    Article  CAS  Google Scholar 

  • Vila-Real H, Alfaia AJ, Calado ART, Ribeiro MHL (2010) Improvement of activity and stability of soluble and sol-gel immobilized naringinase in co-solvent systems. J Mol Catal B Enz 65:10–91

    Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Yadav V, Yadav PK, Yadav S, Yadav KDS (2010) Rhamnosidase: a review. Process Biochem 45:1226–1235

    Article  CAS  Google Scholar 

  • Yadav V, Yadav S, Yadav S, Ydav KDS (2011) Rhamnosidase from Aspergillus flavus MTCC 9606 isolated from lemon fruit peel. Int J Food Sci Technol 46:350–357

    Article  CAS  Google Scholar 

  • Yanai T, Sato M (2000) Purification and characterization of an rhamnosidase from Pichia angusta X349. Biosci Biotechnol Biochem 64:2179–2185

    Article  CAS  Google Scholar 

  • Young NM, Johnston RAZ, Richards JC (1989) Purification of the α-l-rhamnosidase of Penicillium decumbens and characterisation of two glycopeptide components. Carbohydr Res 191:53–62

    Article  CAS  Google Scholar 

  • Yusof S, Ghazali HM, King GS (1990) Naringin content in local citrus fruits. Food Chem 37:113–121

    Article  CAS  Google Scholar 

  • Zverlov VV, Hertel C, Bronnernmeier K, Hroch A, Kellermann J, Schwarz WH (2000) The thermostable alpha-l-rhamnosidaseRamA of Clostridium stercorarium: biochemical characterization and primary structure of bacterial alpha-l-rhamnose hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol 35:173–179

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Director, Centre for Biotechnology and Interdisciplinary Sciences (CBIS), ITRI for providing the necessary facility to carry out this work at Deakin University, Australia. Some of the data presented in this write-up has emanated from the research work carried at Department of Biotechnology, Punjabi University, India.

Conflicts of interest

The author declare that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, M. Updates on naringinase: structural and biotechnological aspects. Appl Microbiol Biotechnol 93, 49–60 (2012). https://doi.org/10.1007/s00253-011-3679-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3679-3

Keywords

Navigation