Skip to main content
Log in

Characterization of an α-l-rhamnosidase from Aspergillus kawachii and its gene

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An α-l-rhamnosidase was purified by fractionating a culture filtrate of Aspergillus kawachii grown on l-rhamnose as the sole carbon source. The α-l-rhamnosidase had a molecular mass of 90 kDa and a high degree of N-glycosylation of approximately 22%. The enzyme exhibited optimal activity at pH 4.0 and temperature of 50 °C. Further, it was observed to be thermostable, and it retained more than 80% of its original activity following incubation at 60 °C for 1 h. Its T 50 value was determined to be 72 °C. The enzyme was able to hydrolyze α-1,2- and α-1,6-glycosidic bonds. The specific activity of the enzyme was higher toward naringin than toward hesperidin. The A. kawachii α-l-rhamnosidase-encoding gene (Ak-rhaA) codes for a 655-amino-acid protein. Based on the amino acid sequence deduced from the cDNA, the protein possessed 13 potential N-glycosylation recognition sites and exhibited a high degree of sequence identity (up to 75%) with the α-l-rhamnosidases belonging to the glycoside hydrolase family 78 from Aspergillus aculeatus and with hypothetical Aspergillus oryzae and Aspergillus fumigatus proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Biochem J 209:331–336

    Article  CAS  Google Scholar 

  • Birgisson H, Hreggvidsson GO, Fridjonsson OH, Mort A, Kristjansson JK, Mattiasson B (2004) Two new thermostable α-l-rhamnosidases from a novel thermophilic bacterium. Enzyme Microb Technol 34:561–571

    Article  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. Royal Society of Chemistry, Cambridge, UK, pp 3–12

    Google Scholar 

  • Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K (2007) Crystal structure of glycoside hydrolase family 78 α-l-rhamnosidase from Bacillus sp. GL1. J Mol Biol 374:384–398

    Article  CAS  Google Scholar 

  • Elinbaum S, Ferreyra H, Ellenrieder G, Cuevas C (2002) Production of Aspergillus terreus α-l-rhamnosidase by solid state fermentation. Lett Appl Microbiol 34:67–71

    Article  CAS  Google Scholar 

  • Gallego MV, Piñaga F, Ramón D, Vallés S (1996) Production and characterization of an Aspergillus terreus α-l-rhamnosidase of oenological interest. Z Lebensm-Unters-Forsch 203:522–527

    Article  Google Scholar 

  • Gallego MV, Piñaga F, Ramón D, Vallés S (2001) Purification and characterization of an α-l-rhamnosidase from Aspergillus terreus of interest in winemaking. J Food Sci 66:204–209

    Article  CAS  Google Scholar 

  • Günata Z, Bitteur S, Brillouet J-M, Bayonove C, Cordonnier RE (1988) Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydr Res 184:139–149

    Article  Google Scholar 

  • Hara Y, Hinoki Y, Shimoi H, Ito K (2003) Cloning and sequence analysis of endoglucanase genes from an industrial fungus, Aspergillus kawachii. Biosci Biotechnol Biochem 67:2010–2013

    Article  CAS  Google Scholar 

  • Hashimoto W, Miyake O, Nankai H, Murata K (2003) Molecular identification of an α-l-rhamnosidase from Bacillus sp. strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophys 415:235–244

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  • Ito K, Ogasawara H, Sugimoto T, Ishikawa T (1992) Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci Biotechnol Biochem 56:547–550

    Article  CAS  Google Scholar 

  • Iwashita K, Todoroki K, Kimura H, Shimoi H, Ito K (1998) Purification and characterization of extracellular and cell wall bound β-glucosidase from Aspergillus kawachii. Biosci Biotechnol Biochem 62:1938–1946

    Article  CAS  Google Scholar 

  • Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M (2005) Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim Biophys Acta 1750:61–68

    Article  CAS  Google Scholar 

  • Koseki T, Okuda M, Sudoh S, Kizaki Y, Iwano K, Aramaki I, Matsuzawa H (2003) Role of two α-l-arabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds, Aspergillus kawachii and Aspergillus awamori. J Biosci Bioeng 96:232–241

    Article  CAS  Google Scholar 

  • Koseki T, Miwa Y, Mese Y, Miyanaga A, Fushinobu S, Wakagi T, Shoun H, Matsuzawa H, Hashizume K (2006) Mutational analysis of N-glycosylation recognition sites on the biochemical properties of Aspergillus kawachii α-l-arabinofuranosidase 54. Biochim Biophys Acta 1760:1458–1464

    Article  CAS  Google Scholar 

  • Maicas S, Mateo JJ (2005) Hydrolysis of terpenyl glycoside in grape juice and other fruit juices: a review. Appl Microbiol Biotechnol 67:322–335

    Article  CAS  Google Scholar 

  • Manzanares P, de Graaff LH, Visser J (1997) Purification and characterization of an α-l-rhamnosidase from Aspergillus niger. FEMS Microbiol Lett 157:279–283

    Article  CAS  Google Scholar 

  • Manzanares P, Orejas M, Ibañez E, Vallés S, Ramón D (2000) Purification and characterization of an α-l-rhamnosidase from Aspergillus nidulans. Lett Appl Microbiol 31:189–202

    Article  Google Scholar 

  • Manzanares P, van den Broeck HC, de Graaff LH, Visser J (2001) Purification and characterization of two different α-l-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl Environ Microbiol 67:2230–2234

    Article  CAS  Google Scholar 

  • Manzanares P, Orejas M, Gil JV, de Graaff LH, Visser J, Ramón D (2003) Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an α-l-rhamnosidase of enological interest. Appl Environ Microbiol 69:7558–7562

    Article  CAS  Google Scholar 

  • Marais J (1983) Terpenes in the aroma of grapes and wines: a review. S Afr J Enol Vitic 4:49–58

    CAS  Google Scholar 

  • Mateo JJ, Jiménez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  CAS  Google Scholar 

  • Mikami S, Iwano K, Shiinoki S, Shimada T (1987) Purification and some properties of acid-stable α-amylase from shochu-koji (Aspergillus kawachii). Agric Biol Chem 51:2495–2501

    CAS  Google Scholar 

  • Mononen I, Karjalainen E (1984) Structural comparison of protein sequences around potential N-glycosylation sites. Biochim Biophys Acta 788:364–367

    Article  CAS  Google Scholar 

  • Mutter M, Beldman G, Schols HA, Voragen AGJ (1994) Rhamnogalacturonan α-l-rhamnopyronohydrolase. A novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonanregions of pectin. Plant Physiol 106:241–250

    Article  CAS  Google Scholar 

  • Ohta T, Ikuta R, Nakashima M, Morimitsu Y, Samuta T, Saiki H (1990) Characteristic flavor of Kansho-shochu (sweet potato spirit). Agric Biol Chem 54:1353–1357

    CAS  Google Scholar 

  • Ohta T, Omori T, Shimojo H, Hashimoto K, Samuta T, Ohba T (1991) Identification of monoterpene alcohol β-glucoside in sweet potatoes and purification of a Shiro-koji β-glucosidase. Agric Biol Chem 55:1811–1816

    CAS  Google Scholar 

  • Orejas M, Ibañez E, Ramón D (1999) The filamentous fungus Aspergillus nidulans produces an α-l-rhamnosidase of potential oenological interest. Lett Appl Microbiol 28:383–388

    Article  CAS  Google Scholar 

  • Puri M, Marwaha SS, Kothari RM, Kennedy JF (1996) Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol 16:145–155

    Article  CAS  Google Scholar 

  • Sakamoto S, Tamura G, Ito K, Ishikawa T, Iwano K, Nishiya N (1995) Cloning and sequencing of cellulose cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae. Curr Genet 27:435–439

    Article  CAS  Google Scholar 

  • Sudo S, Ishikawa T, Takayasu-Sakamoto Y, Sato K, Oba T (1993) Characteristics of acid-stable α-amylase production by submerged culture of Aspergillus kawachii. J Ferment Bioeng 76:105–110

    Article  CAS  Google Scholar 

  • Williams PJ, Strauss CR, Wilson B (1981) Classification of the monoterpenoid composition of Muscat grapes. Am J Enol Vitic 32:230–235

    CAS  Google Scholar 

  • Yanai T, Sato M (2000) Purification and characterization of an α-l-rhamnosidase from Pichia angusta X349. Biosci Biotechnol Biochem 64:2179–2185

    Article  CAS  Google Scholar 

  • Young NM, Johnston RAZ, Richards JC (1989) Purification of α-l-rhamnosidase of Penicillium decumbens and characterisation of two glycopeptide components. Carbohydr Res 191:53–62

    Article  CAS  Google Scholar 

  • Zverlov VV, Hertel C, Bronnenmeier K, Hroch A, Kellermann J, Schwarz WH (2000) The thermostable α-l-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-l-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol 35:173–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Koseki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

Alignment of the amino acid sequences of A. kawachii Ak-RhaA (accession no. AB374267), A. aculeatus RhaA (accession no. AF284761), A. aculeatus RhaB (accession no. AF284762), Bacillus sp. GL1 RhaB, and hypothetical proteins from A. oryzae (accession no. XP_001820356) and A. fumigatus (XP_749916). Identical residues among the six enzymes have been indicated by asterisks. Residues with conserved substitutions and semi-conserved substitutions have been indicated by colons and dots, respectively. The N-terminal amino acid sequence determined by using a protein sequencer has been underlined. Key residues involved in the enzyme catalysis and/or substrate recognition of Bacillus sp. GL1 RhaB have been indicated in boxes. (PDF 64.9 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koseki, T., Mese, Y., Nishibori, N. et al. Characterization of an α-l-rhamnosidase from Aspergillus kawachii and its gene. Appl Microbiol Biotechnol 80, 1007–1013 (2008). https://doi.org/10.1007/s00253-008-1599-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1599-7

Keywords

Navigation