Skip to main content
Log in

Genetic improvement of brewer’s yeast: current state, perspectives and limits

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brewer’s yeast strain optimisation may lead to a more efficient beer production process, better final quality or healthier beer. However, brewer’s yeast genetic improvement is very challenging, especially true when it comes to lager brewer’s yeast (Saccharomyces pastorianus) which contributes to 90% of the total beer market. This yeast is a genetic hybrid and allopolyploid. While early studies applying traditional genetic approaches encountered many problems, the development of rational metabolic engineering strategies successfully introduced many desired properties into brewer’s yeast. Recently, the first genome sequence of a lager brewer’s strain became available. This has opened the door for applying advanced omics technologies and facilitating inverse metabolic engineering strategies. The latter approach takes advantage of natural diversity and aims at identifying and transferring the crucial genetic information for an interesting phenotype. In this way, strains can be optimised by introducing “natural” mutations. However, even when it comes to self-cloned strains, severe concerns about genetically modified organisms used in the food and beverage industry are still a major hurdle for any commercialisation. Therefore, research efforts will aim at developing new sophisticated screening methods for the isolation of natural mutants with the desired properties which are based on the knowledge of genotype–phenotype linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544

    Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Google Scholar 

  • Andersen T, Hoffmann L, Grifone R, Nilsson-Tillgren T, Kielland-Brandt M (2000) Brewing yeast genetics. EBC Monograph Nürnberg, Fachverlag Hans Carl, pp 140–147

    Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    Google Scholar 

  • Attfield AV, Bell PJL (2003) Genetics and classical genetic manipulations of industrial yeasts. In: JHd W (ed) Functional genetics of industrial yeasts. Springer, Berlin, pp 17–55

    Google Scholar 

  • Bilinski CA, Casey J (1989) Developments in sporulation and breeding of brewer’s yeast. Yeast 5:429–438

    Google Scholar 

  • Blieck L, Toye G, Dumortier F, Verstrepen KJ, Delvaux FR et al (2007) Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl Environ Microbiol 73:815–824

    Google Scholar 

  • Blomqvist K, Suihko ML, Knowles J, Penttila M (1991) Chromosomal integration and expression of two bacterial alpha-acetolactate decarboxylase genes in brewer’s yeast. Appl Environ Microbiol 57:2796–2803

    Google Scholar 

  • Bond U, Neal C, Donnelly D, James TC (2004) Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr Genet 45:360–370

    Google Scholar 

  • Borsting C, Hummel R, Schultz ER, Rose TM, Pedersen MB et al (1997) Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 13:1409–1421

    Google Scholar 

  • Boulton CA, Quain DE (2001) Brewing yeast and fermentation. Blackwell Science, Oxford

    Google Scholar 

  • Brejning J, Arneborg N, Jespersen L (2005) Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. J Appl Microbiol 98:261–271

    Google Scholar 

  • Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H et al (1997) In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Google Scholar 

  • Casaregola S, Nguyen HV, Lapathitis G, Kotyk A, Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51:1607–1618

    Google Scholar 

  • Cebollero E, Gonzalez-Ramos D, Tabera L, Gonzalez R (2007) Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol Lett 29:191–200

    Google Scholar 

  • Charron MJ, Michels CA (1988) The naturally occurring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120:83–93

    Google Scholar 

  • Charron MJ, Read E, Haut SR, Michels CA (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316

    Google Scholar 

  • Cole GE, McCabe PC, Inlow D, Gelfand DH, Ben-Bassat A et al (1988) Stable expression of Aspergillus awamori glucoamylase in distiller’s yeast. Biotechnology 6:417–421

    Google Scholar 

  • Daran-Lapujade P, Daran JM, Kotter P, Petit T, Piper MD et al (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4:259–269

    Google Scholar 

  • Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002a) Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–1027

    Google Scholar 

  • Day RE, Rogers PJ, Dawes IW, Higgins VJ (2002b) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335

    Google Scholar 

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Google Scholar 

  • Dietvorst J, Londesborough J, Steensma HY (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–788

    Google Scholar 

  • Dion B, Brown GW (2009) Comparative genome hybridization on tiling microarrays to detect aneuploidies in yeast. Methods Mol Biol 548:1–18

    Google Scholar 

  • Donalies UE, Stahl U (2001) Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions. Curr Genet 39:150–155

    Google Scholar 

  • Donalies UE, Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19:475–484

    Google Scholar 

  • Donalies UE, Nguyen HT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv Biochem Eng Biotechnol 111:67–98

    Google Scholar 

  • Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623

    Google Scholar 

  • Engan S (1972) Organoleptic threshold values of some alcohols and esters in beer. J Inst Brew 78:33–37

    Google Scholar 

  • Fujii T, Kondo K, Shimizu F, Sone H, Tanaka J et al (1990) Application of a ribosomal DNA integration vector in the construction of a brewer’s yeast having alpha-acetolactate decarboxylase activity. Appl Environ Microbiol 56:997–1003

    Google Scholar 

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y et al (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60:2786–2792

    Google Scholar 

  • Fujii T, Yoshimoto H, Nagasawa N, Bogaki T, Tamai Y et al (1996a) Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis. Yeast 12:593–598

    Google Scholar 

  • Fujii T, Yoshimoto H, Tamai Y (1996b) Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J Ferment Bioeng 81:538–542

    Google Scholar 

  • Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ et al (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11:233–239

    Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Google Scholar 

  • Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ et al (2008) Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 25:549–562

    Google Scholar 

  • Gjermansen C, Sigsgaard P (1981) Construction of a hybrid brewing strain of Saccharomyces carlsbergensis by mating meiotic segregants. Carlsberg Res Comm 46:1–11

    Google Scholar 

  • Godtfredsen SE, Ottesen M (1982) Maturation of beer with α-acetolactate decarboxylase. Carlsberg Res Commun 47:93–102

    Google Scholar 

  • Goelling D, Stahl U (1988) Cloning and expression of an alpha-acetolactate decarboxylase gene from Streptococcus lactis subsp. diacetylactis in Escherichia coli. Appl Environ Microbiol 54:1889–1891

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Goldenthal MJ, Vanoni M, Buchferer B, Marmur J (1987) Regulation of MAL gene expression in yeast: gene dosage effects. Mol Gen Genet 209:508–517

    Google Scholar 

  • Gonzalez SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320

    Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae Appl Environ Microbiol 74(19):6041–6052

    Google Scholar 

  • Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ et al (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311:1932–1936

    Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA et al (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303

    Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395

    Google Scholar 

  • Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15:1153–1160

    Google Scholar 

  • Hammond JR (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–1627

    Google Scholar 

  • Hansen EC (1883) Recherches sur la physiologie et la morphologie des ferments alcooliques V. Methodes pour obtenir des cultures pures de Saccharomyces et de mikroorganismes analogues. C R Trav Lab Carlsberg 2:92–105

    Google Scholar 

  • Hansen EC (1908) Investigations on the physiology and morphology of budding yeast. XII. New studies of bottom fermenting brewers yeast. C R Trav Lab Carlsberg 7:179–217

    Google Scholar 

  • Hansen J (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl Environ Microbiol 65:3915–3919

    Google Scholar 

  • Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologs from S. cerevisiae and S. monacensis. Gene 140:33–40

    Google Scholar 

  • Hansen J, Kielland-Brandt MC (1996) Inactivation of MET10 in brewer’s yeast specifically increases SO2 formation during beer production. Nat Biotechnol 14:1587–1591

    Google Scholar 

  • Hansen J, Kielland-Brandt M (1997) Brewer’s yeast. In: Zimmerman F, Entian K (eds) Yeast sugar metabolism, biochemistry, genetics, biotechnology and applications. Technomic, New York, pp 503–526

    Google Scholar 

  • Hansen J, Kielland-Brandt MC (2003) Brewer’s yeast: genetic structure and targets for improvement. In: Winde JHd (ed) Functional genetics of industrial yeasts. Springer, Berlin pp 143–203

  • Hansen J, Cherest H, Kielland-Brandt MC (1994) Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176:6050–6058

    Google Scholar 

  • Harrison P, Kumar A, Lan N, Echols N, Snyder M et al (2002) A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol 316:409–419

    Google Scholar 

  • Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787

    Google Scholar 

  • Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180

    Google Scholar 

  • Ivorra C, Perez-Ortin JE, del Olmo M (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64:698–708

    Google Scholar 

  • James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    Google Scholar 

  • Jespersen L, Cesar LB, Meaden PG, Jakobsen M (1999) Multiple alpha-glucoside transporter genes in brewer’s yeast. Appl Environ Microbiol 65:450–456

    Google Scholar 

  • Jin YL, Speers RA, Paulson AT, Stewart RJ (2004) Effect of beta-glucans and process conditions on the membrane filtration performance of beer. J Am Soc Brew Chem 62:117–124

    Google Scholar 

  • Jones M, Pierce JS (1964) Absorption of amino acids from worts by yeasts. J Inst Brew 70:307–315

    Google Scholar 

  • Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F et al (2000) Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast 16:511–522

    Google Scholar 

  • Joubert R, Strub JM, Zugmeyer S, Kobi D, Carte N et al (2001) Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast. Electrophoresis 22:2969–2982

    Google Scholar 

  • Katou T, Namise M, Kitagaki H, Akao T, Shimoi H (2009) QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng 107:383–393

    Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    Google Scholar 

  • Kobi D, Zugmeyer S, Potier S, Jaquet-Gutfreund L (2004) Two-dimensional protein map of an “ale”-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 5:213–230

    Google Scholar 

  • Koch R (1881) Zur Untersuchung von pathogenen Organismen. Mittheilungen aus dem kaiserlichen Gesundheitsamte, pp 1–48

  • Kodama Y, Omura F, Ashikari T (2001) Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 67:3455–3462

    Google Scholar 

  • Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245

    Google Scholar 

  • Lancashire W, Carter A, Howard J, Wilde R (1989) Superattenuating brewing yeast. Proc 22nd Congr Eur Brew Conv Zürich, Oxford University Press, Oxford pp 491–496

  • Lee YT, Bamforth CW (2009) Variations in solubility of barley beta-glucan during malting and impact on levels of beta-glucan in wort and beer. J Am Soc Brew Chem 67:67–71

    Google Scholar 

  • Linko M, Kronlöf J (1991) Main fermentation with immobilized yeast. Proc 23rd Congr Eur Brew Conv, Lisbon, Oxford University Press, Oxford pp 353–360

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Google Scholar 

  • Liu XF, Wang ZY, Wang JJ, Lu Y, He XP et al (2009) Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett Appl Microbiol 49:117–123

    Google Scholar 

  • MacAlpine DM, Perlman PS, Butow RA (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19:767–775

    Google Scholar 

  • Malcorps P, Dufour JP (1992) Short-chain and medium-chain aliphatic ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015–1022

    Google Scholar 

  • Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P et al (2007) Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952

    Google Scholar 

  • Meaden PG, Tubb RS (1985) A plasmid vector system for the genetic manipulation of brewing strains. Proc 20th Congr Eur Brew Conv Helsinki, Oxford University Press, Oxford pp 219–226

  • Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S et al (2009) Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Yeast 26:147–165

    Google Scholar 

  • Mizuno A, Tabei H, Iwahuti M (2006) Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing. J Biosci Bioeng 101:31–37

    Google Scholar 

  • Nakao Y, Kodama Y, Shimonaga T (2007) Gene expression analysis of lager brewing yeast under different oxygenation condition using newly developed DNA microarray. Proc 31th Congr Eur Brew Conv Venice, Oxford University Press, Oxford pp 406–419

  • Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S et al (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50:1931–1942

    Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Google Scholar 

  • Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S et al (2002) Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res 2:225–232

    Google Scholar 

  • Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273

    Google Scholar 

  • Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U et al (2007) Engineering promoter regulation. Biotechnol Bioeng 96:550–558

    Google Scholar 

  • Olesen K, Felding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563–573

    Google Scholar 

  • Omura F (2008) Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 78:503–513

    Google Scholar 

  • Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69:1162–1171

    Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE et al (2009) Direct RNA sequencing. Nature 461:814–818

    Google Scholar 

  • Park CS, Park YJ, Lee YH, Park KJ, Kang HS et al (1990) The novel genetic manipulation to improve the plasmid stability and enzyme activity in the recombinant brewing yeast. Tech Q Master Brew Assoc Am 17:112–116

    Google Scholar 

  • Pasteur ML (1876) Études sur la bière: ses maladies, causes qui les provoquent, procédé pour la rendre inaltérable; avec une theorie nouvelle de la fermentation. Gauthier-Villars, Paris

    Google Scholar 

  • Perry C, Meaden P (1988) Properties of a genetically engineered dextrin-fermenting strain of brewer’s yeast. J Inst Brew 94:64

    Google Scholar 

  • Petersen JGL, Kiellandbrandt MC, Holmberg S, Nilsson-Tillgren T (1983) Mutational analysis of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Mapping of ilv2 and ilv5. Carlsberg Res Comm 48:21–34

    Google Scholar 

  • Piddocke MP, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L (2009) Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 84:453–464

    Google Scholar 

  • Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ et al (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24:667–679

    Google Scholar 

  • Querol A, Bond U (2009) The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293:1–10

    Google Scholar 

  • Rainieri S, Kodama Y, Kaneko Y, Mikata K, Nakao Y et al (2006) Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl Environ Microbiol 72:3968–3974

    Google Scholar 

  • Ryder DS, Masschelein CA (1985) The growth process of brewing yeast and the biotechnological challenge. J Am Soc Brew Chem 43:66–75

    Google Scholar 

  • Sakai K, Fukui S, Yabuuchi S, Aoyagi S, Tsumura Y (1989) Expression of the Saccharomyces diastaticus STA1 gene in brewing yeasts. J Amer Soc Brew Chem 47:87–91

    Google Scholar 

  • Sato M, Kishimoto M, Watari J, Takashio M (2002) Breeding of brewer’s yeast by hybridization between a top-fermenting yeast Saccharomyces cerevisiae and a cryophilic yeast Saccharomyces bayanus. J Biosci Bioeng 93:509–511

    Google Scholar 

  • Sauer U, Schlattner U (2004) Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 6:220–228

    Google Scholar 

  • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458:342–345

    Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Google Scholar 

  • Scott JA, Huxtable SM (1995) Removal of alcohol from beverages. J Appl Bacteriol 79:19–28

    Google Scholar 

  • Smart KA (2007) Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 24:993–1013

    Google Scholar 

  • Sone H, Fujii T, Kondo K, Shimizu F, Tanaka J et al (1988) Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer’s yeast. Appl Environ Microbiol 54:38–42

    Google Scholar 

  • Stratford M (1992) Yeast flocculation: a new perspective. Adv Microb Physiol 33:2–71

    Google Scholar 

  • Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 14:923–933

    Google Scholar 

  • Tamai Y, Tanaka K, Umemoto N, Tomizuka K, Kaneko Y (2000) Diversity of the HO gene encoding an endonuclease for mating-type conversion in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 16:1335–1343

    Google Scholar 

  • Teresa Fernandez-Espinar M, Barrio E, Querol A (2003) Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast 20:1213–1226

    Google Scholar 

  • Tezuka H, Mori T, Okumura Y, Kitabatake K, Tsumura Y (1992) Cloning of a gene suppressing hydrogen sulfide production by Saccharomyces cerevisiae and its expression in a brewing yeast. J Am Soc Brew Chem 50:130–133

    Google Scholar 

  • Urano N, Sahara H, Koshino S (1993) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electrofusion. I: Identification and characterization of the fusants by pulsed field gel electrophoresis. J Biotechnol 28:237–247

    Google Scholar 

  • Vakeria D, Hinchliffe E (1989) Amylolytic brewing yeast: their commercial and legislative acceptability. Proc 22nd Congr Eur Brew Conv, Zürich, Oxford University Press, Oxford pp 475–482

  • Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ et al (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Google Scholar 

  • Vandenbol M, Jauniaux JC, Grenson M (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83:153–159

    Google Scholar 

  • Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322

    Google Scholar 

  • Vaughan-Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 53:77–84

    Google Scholar 

  • Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FR, Delvaux F (2009) The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 9:226–239

    Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM et al (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Thevelein JM et al (2003a) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96:110–118

    Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003b) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205

    Google Scholar 

  • Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP et al (2003c) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    Google Scholar 

  • Vidgren V, Ruohonen L, Londesborough J (2005) Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains. Appl Environ Microbiol 71:7846–7857

    Google Scholar 

  • Vidgren V, Huuskonen A, Virtanen H, Ruohonen L, Londesborough J (2009) Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl Environ Microbiol 75:2333–2345

    Google Scholar 

  • Vogel J, Wackerbauer K, Stahl U (1995) Genetically modified food-safety issues. ACS symposium series 605. In: KH Engel, GR Takeoka, R Teranishi (ed) American Chemical Society, Washington, DC, p 160

  • Wainwright T (1973) Diacetyl—a review. Part I—analytical and biochemical considerations; part II—brewing experience. J Inst Brew 79:451–470

    Google Scholar 

  • Wang SA, Bai FY (2008) Saccharomyces arboricolus sp nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514

    Google Scholar 

  • Warner JR, Patnaik R, Gill RT (2009) Genomics enabled approaches in strain engineering. Curr Opin Microbiol 12:223–230

    Google Scholar 

  • Winzeler EA, Lee B, McCusker JH, Davis RW (1999) Whole genome genetic-typing in yeast using high-density oligonucleotide arrays. Parasitology 118:73–80

    Google Scholar 

  • Yamagishi H, Ogata T (1999) Chromosomal structures of bottom fermenting yeasts. Syst Appl Microbiol 22:341–353

    Google Scholar 

  • Yamano S, Kondo K, Tanaka J, Inoue T (1994a) Construction of a brewer’s yeast having [alpha]-acetolactate decarboxylase gene from Acetobacter aceti ssp. xylinum integrated in the genome. J Biotechnol 32:173–178

    Google Scholar 

  • Yamano S, Tanaka J, Inoue T (1994b) Cloning and expression of the gene encoding alpha-acetolactate decarboxylase from Acetobacter aceti ssp. xylinum in brewer’s yeast. J Biotechnol 32:165–171

    Google Scholar 

  • Yocum R (1986) Genetic engineering of industrial yeasts. Proc Bio Expo 86. Butterworth, Stoneham, p 171

    Google Scholar 

  • Yoshida S, Hashimoto K, Shimada E, Ishiguro T, Minato T et al (2007) Identification of bottom-fermenting yeast genes expressed during lager beer fermentation. Yeast 24:599–606

    Google Scholar 

  • Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M et al (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796

    Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Ito C, Sone H et al (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J Ferment Bioeng 86:15–20

    Google Scholar 

  • Yoshioka K, Hashimoto N (1984) Acetyl-CoA of brewers yeast and formation of acetate esters. Agri Biol Chem 48:207–209

    Google Scholar 

  • Zufall C, Wackerbauer K (2000) Process engineering parameters for the dealcoholisation of beer by means of falling film evaporation and its influence on beer quality. Monatsschrift für Brauwissenschaft 53:124–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Nevoigt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saerens, S.M.G., Duong, C.T. & Nevoigt, E. Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biotechnol 86, 1195–1212 (2010). https://doi.org/10.1007/s00253-010-2486-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2486-6

Keywords

Navigation