Skip to main content

Advertisement

Log in

Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Xylooligosaccharides have strong bifidogenic properties and are increasingly used as a prebiotic. Nonetheless, little is known about the degradation of these substrates by bifidobacteria. We characterized two recombinant β-xylosidases, XylB and XylC, with different substrate specificities from Bifidobacterium adolescentis. XylB is a novel β-xylosidase that belongs to the recently introduced glycoside hydrolase family 120. In contrast to most reported β-xylosidases, it shows only weak activity on xylobiose and prefers xylooligosaccharides with a degree of polymerization above two. The remaining xylobiose is efficiently hydrolyzed by the second B. adolescentis β-xylosidase, XylC, a glycoside hydrolase of family 43. Furthermore, XylB releases more xylose from arabinose-substituted xylooligosaccharides than XylC (30% and 20%, respectively). The different specificities of XylB, XylC, and the recently described reducing-end xylose-releasing exo-oligoxylanase RexA show how B. adolescentis can efficiently degrade prebiotic xylooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH (2004) Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Campbell JM, Fahey J, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    CAS  Google Scholar 

  • Chung YC, Hsu CK, Ko CY, Chan YC (2007) Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 27:756–761

    Article  CAS  Google Scholar 

  • Cloetens L, De Preter V, Swennen K, Broekaert WF, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K (2008) Dose-response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. J Am Coll Nutr 27:512–518

    CAS  Google Scholar 

  • Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM, Delcour JA, Rutgeerts P, Verbeke K (2010) Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br J Nutr 103:703–713

    Article  CAS  Google Scholar 

  • Courtin CM, Van den Broeck H, Delcour JA (2000) Determination of reducing end sugar residues in oligo-and polysaccharides by gas-liquid chromatography. J Chromatogr A 866:97–104

    Article  CAS  Google Scholar 

  • Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7:353–361

    Article  CAS  Google Scholar 

  • Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  CAS  Google Scholar 

  • Eneyskaya EV, Brumer H, Backinowsky LV, Ivanen DR, Kulminskaya AA, Shabalin KA, Neustroev KN (2003) Enzymatic synthesis of β-xylanase substrates: transglycosylation reactions of the β-xylosidase from Aspergillus sp. Carbohydr Res 338:313–325

    Article  CAS  Google Scholar 

  • Gobinath D, Madhu AN, Prashant G, Srinivasan K, Prapulla SG (2010) Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br J Nutr 104:40–47

    Article  CAS  Google Scholar 

  • Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528

    CAS  Google Scholar 

  • Imaizumi K, Nakatsu Y, Sato M, Sedarnawati Y, Sugano M (1991) Effects of xylooligosaccharides on blood glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric Biol Chem 1:199–205

    Article  Google Scholar 

  • John M, Schmidt B, Schmidt J (1979) Purification and some properties of five endo-1,4-β-D-xylanases and β-d-xylosidase produced by a strain of Aspergillus niger. Biochem Cell Biol 57:125–134

    Article  CAS  Google Scholar 

  • Katapodis P, Nerinckx W, Claeyssens M, Christakopoulos P (2006) Purification and characterization of a thermostable intracellular β-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochem 41:2402–2409

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  • Knob A, Terrasan C, Carmona E (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Kumar S, Ramón D (1996) Purification and regulation of the synthesis of a β-xylosidase from Aspergillus nidulans. FEMS Microbiol Lett 135:287–293

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lagaert S, Van Campenhout S, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert G (2007) Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis. Appl Environ Microbiol 73:5374–5377

    Article  CAS  Google Scholar 

  • Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G (2010) Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun 402:644–650

    Article  CAS  Google Scholar 

  • Lee YE, Zeikus JG (1993) Genetic organization, sequence and biochemical characterization of recombinant β-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J Gen Microbiol 139:1235–1243

    CAS  Google Scholar 

  • Mäkeläinen H, Juntunen M, Hasselwander O (2009) Prebiotic potential of xylo-oligosaccharides. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York, pp 245–258

    Chapter  Google Scholar 

  • Matsui I, Ishikawa K, Matsui E, Miyairi S, Fukui S, Honda K (1991) Subsite structure of Saccharomycopsis α-amylase secreted from Saccharomyces cerevisiae. J Biochem 109:566–569

    CAS  Google Scholar 

  • Matsuo M, Fujie A, Win M, Yasui T (1987) Four types of β-xylosidases from Penicillium wortmanni IFO 7237. Agric Biol Chem 51:2367–2379

    Article  CAS  Google Scholar 

  • Moura P, Barata R, Carvalheiro F, Girio FM, Loureiro-Dias MC, Esteves MP (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. Lebensm Wiss Technol 40:963–972

    Article  CAS  Google Scholar 

  • Muzard M, Aubry N, Plantier-Royon R, O'Donohue M, Rémond C (2009) Evaluation of the transglycosylation activities of a GH 39 β-d-xylosidase for the synthesis of xylose-based glycosides. J Mol Catal B Enzym 58:1–5

    Article  CAS  Google Scholar 

  • Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylo-oligosaccharide on the growth of bifidobacteria. Bifidobact Microflora 9:77–86

    Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  CAS  Google Scholar 

  • Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M (2009) In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agric Food Chem 57:8598–8606

    Article  CAS  Google Scholar 

  • Pollet A, Lagaert S, Eneyskaya E, Kulminskaya A, Delcour JA, Courtin CM (2010) Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Biochim Biophys Acta 1804:977–985

    CAS  Google Scholar 

  • Rasmussen LE, Sørensen HR, Vind J, Viksø-Nielsen A (2006) Mode of action and properties of the β-xylosidases from Talaromyces emersonii and Trichoderma reesei. Biotechnol Bioeng 94:869–876

    Article  CAS  Google Scholar 

  • Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:156–160

    Article  CAS  Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    Article  CAS  Google Scholar 

  • Saha BC (2003) Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol 90:33–38

    Article  CAS  Google Scholar 

  • Santos A, San Mauro M, Díaz DM (2006) Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol 23:498–503

    Article  CAS  Google Scholar 

  • Saxena S, Fierobe HP, Gaudin C, Guerlesquin F, Belaich JP (1995) Biochemical properties of a β-xylosidase from Clostridium cellulolyticum. Appl Environ Microbiol 61:3509–3512

    CAS  Google Scholar 

  • Shao W, Wiegel J (1992) Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853

    CAS  Google Scholar 

  • Shao W, Xue Y, Wu A, Kataeva I, Pei J, Wu H, Wiegel J (2011) Characterization of a novel β-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 77:719–726

    Article  CAS  Google Scholar 

  • Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH (2003) Purification and characterization of ginsenoside Ra-hydrolyzing β-d-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol Pharm Bull 26:1170–1173

    Article  CAS  Google Scholar 

  • Smaali I, Rémond C, O'Donohue M (2006) Expression in Escherichia coli and characterization of β-xylosidases GH39 and GH-43 from Bacillus halodurans C-125. Appl Microbiol Biotechnol 73:582–590

    Article  CAS  Google Scholar 

  • Swennen K, Courtin CM, Lindemans GC, Delcour JA (2006) Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. J Sci Food Agric 86:1722–1731

    Article  CAS  Google Scholar 

  • Takenishi S, Tsujisaka Y, Fukumoto J (1973) Studies on hemicellulases. IV. Purification and properties of the β-xylosidase produced by Aspergillus niger van Tieghem. J Biochem (Tokyo) 73:335

    CAS  Google Scholar 

  • Taniguchi H (2004) Carbohydrate research and industry in Japan and the Japanese Society of Applied Glycoscience. Starch 56:1–5

    Article  CAS  Google Scholar 

  • Tateyama I, Hashii K, Johno I, Iino T, Hirai K, Suwa Y, Kiso Y (2005) Effect of xylooligosaccharides intake on severe constipation in pregnant women. J Nutr Sci Vitaminol (Tokyo) 51:445–448

    Article  CAS  Google Scholar 

  • Trogh I, Courtin CM, Delcour JA (2004) Isolation and characterization of water-extractable arabinoxylan from hull-less barley flours. Cereal Chem 81:576–581

    Article  CAS  Google Scholar 

  • Van Craeyveld V, Swennen K, Dornez E, Van de Wiele T, Marzorati M, Verstraete W, Delaedt Y, Onagbesan O, Decuypere E, Buyse J, De Ketelaere B, Broekaert WF, Delcour JA, Courtin CM (2008) Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 138:2348–2355

    Article  Google Scholar 

  • Van Laere KMJ, Voragen CHL, Kroef T, van den Broek LAM, Beldman G, Voragen AGJ (1999) Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Appl Microbiol Biotechnol 51:606–613

    Article  Google Scholar 

  • Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393

    Article  Google Scholar 

  • Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DWS (2005) Enzyme-coupled assay for β-xylosidase hydrolysis of natural substrates. Appl Environ Microbiol 71:5318–5323

    Article  CAS  Google Scholar 

  • Wagschal K, Franqui-Espiet D, Lee C, Robertson G, Wong D (2008) Cloning, expression and characterization of a glycoside hydrolase family 39 xylosidase from Bacillus halodurans C-125. Appl Biochem Biotechnol 146:69–78

    Article  CAS  Google Scholar 

  • Wang J, Sun B, Cao Y, Wang C (2010) In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydr Polym 82:419–423

    Article  CAS  Google Scholar 

  • Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410

    Article  CAS  Google Scholar 

  • Younes H, Garleb K, Behr S, Remesy C, Demigne C (1995) Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J Nutr 125:1010–1016

    CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Grootaert (Laboratory for Microbial Ecology and Technology, Ghent University, Belgium) for providing a genomic DNA sample of B. adolescentis. We gratefully acknowledge the financial support from the “Instituut voor de aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen” (I.W.T., SBO IMPAXOS project funding) and the Research Fund K.U. Leuven (project IDO/03/005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe M. Courtin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOC 103 kb

ESM 2

DOC 79 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagaert, S., Pollet, A., Delcour, J.A. et al. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl Microbiol Biotechnol 92, 1179–1185 (2011). https://doi.org/10.1007/s00253-011-3396-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3396-y

Keywords

Navigation