Skip to main content
Log in

1,3-Propanediol production in a two-step process fermentation from renewable feedstock

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the production of 1,3-propanediol from glucose and molasses was studied in a two-step process using two recombinant microorganisms. The first step of the process is the conversion of glucose or other sugar into glycerol by the metabolic engineered Saccharomyces cerevisiae strain HC42 adapted to high (>200 g l−1) glucose concentrations. The second step, carried out in the same bioreactor, was performed by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) that converts glycerol to 1,3-propanediol. This two-step strategy led to a flexible process, resulting in a 1,3-propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g l−1 of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations, glycerol initially produced by yeast could not be totally converted into 1,3-propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. In our hand, the best results were obtained with an initial glucose concentration of 103 g l−1, leading to a final 1,3-propanediol concentration of 25.5 g l−1, a productivity of 0.16 g l−1 h−1 and 1,3-propanediol yields of 0.56 g g−1 glycerol and 0.24 g g−1 sugar, which is the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g l−1, 27.4 g l−1 of glycerol were produced, leading to 14.6 g l−1 of 1.3-propanediol and similar values of productivity, 0.15 g l−1 h−1, and overall yield, 0.26 g g−1 sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atiyeh H, Duvnjak Z (2003) Production of fructose and ethanol from cane molasses using Saccharomyces cerevisiae ATCC 36858. Acta Biotechnol 1:37–48

    Article  Google Scholar 

  • Barbirato F, Camarasa-Claret C, Bories A, Grivet JP (1995) Description of the glycerol fermentation by a new 1,3-propanediol producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793

    Article  CAS  Google Scholar 

  • Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7:281–289

    Article  CAS  Google Scholar 

  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol 36:592–597

    Article  CAS  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457

    Article  CAS  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99:4648–4660

    Article  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM (2006) Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28:1817–1821

    Article  CAS  Google Scholar 

  • Cordier H, Mendes F, Vasconcelos I, François JM (2007) A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng 9:364–378

    Article  CAS  Google Scholar 

  • Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteuriano. Appl Environ Microbiol 58:1233–1239

    CAS  Google Scholar 

  • Daniel R, Stuertz K, Gottschalk G (1995) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392–4401

    CAS  Google Scholar 

  • Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643

    CAS  Google Scholar 

  • Fouad M, Ali AZ, Yassein M (1982) Utilisation of blackstrap molasses for the production of acetone and butanol by Clostridium acetobutylicum. Agro Wastes 4:291–304

    Article  CAS  Google Scholar 

  • González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    Article  Google Scholar 

  • González-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101

    Article  Google Scholar 

  • Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng AP (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66

    Article  CAS  Google Scholar 

  • Heux S, Cachon R, Dequin S (2006) Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8:303–314

    Article  CAS  Google Scholar 

  • Hirschmann S, Koschik I, Baganz K, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol water. Landbauforschung Völkenrode 55:261–267

    CAS  Google Scholar 

  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126

    Article  CAS  Google Scholar 

  • Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technol 100:3403–3409

    Article  CAS  Google Scholar 

  • Kumar P, Chandra R (2006) Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresource Technol 97:2096–2102

    Article  CAS  Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. J Polymer Environ 13:159–167

    Article  CAS  Google Scholar 

  • Lagunas R, Dominguez C, Busturia A, Saez MJ (1982) Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport system. J Bacteriol 152:19–25

    CAS  Google Scholar 

  • Lloyd D, Kristensen B, Degn H (1983) Glycolysis and respiration in yeasts: the effect of ammonium ions studied by mass spectrometry. J Gen Microbiol 129:2125–2127

    CAS  Google Scholar 

  • Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B (2009) Expression of DHA operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr Microbiol 60:191–198

    Article  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  Google Scholar 

  • Németh A, Sevella B (2008) Development of a new bioprocess for production of 1,3-propanediol I.: modeling of glycerol bioconversion to 1,3-propanediol with Klebsiella pneumoniae enzymes. Appl Biochem Biotechnol 144:47–58

    Article  Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    Article  CAS  Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32:60–71

    Article  CAS  Google Scholar 

  • Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X (2008) Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from d-glucose. J Appl Microbiol 105:1768–1776

    Article  CAS  Google Scholar 

  • Raynaud C, Sarçabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Molecular characterization of the 1,3-propanediol operon of Clostridium butyricum encoding a novel coenzyme B12 independent glycerol dehydratase and a 1,3 propanediol dehydrogenase. Proc Natl Acad Sci 100:5010–5015

    Article  CAS  Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-products formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  Google Scholar 

  • Remize F, Barnavon L, Dequin S (2001) Glycerol export and glycerol-phosphate dehydrogenase, but not glycerol phosphate, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 3:301–312

    Article  CAS  Google Scholar 

  • Schutz H, Radler F (1984) Anaerobic reduction of glycerol to propanediol-1,3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5:169–178

    Google Scholar 

  • Sirianuntapiboon S, Prasertsong K (2008) Treatment of molasses wastewater by acetogenic bacteria BP103 in sequencing batch reactor (SBR) system. Bioresour Technol 99:1806–1815

    Article  CAS  Google Scholar 

  • Tondee T, Sirianuntapiboon S (2008) Decolorization of molasses wastewater by Lactobacillus plantarum No. PV71-1861. Bioresour Technol 99:6258–6265

    Article  CAS  Google Scholar 

  • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714

    Article  Google Scholar 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450

    CAS  Google Scholar 

  • Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110:831–840

    Article  CAS  Google Scholar 

  • Zheng Y, Zhao L, Zhang J, Zhang H, Ma X, Wei D (2008) Production of glycerol from glucose by coexpressing glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase in Klebsiella pneumoniae. J Biosci Bioeng 105:508–512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was financially supported by European Committee Fifth Framework Programme Project (Contact nº QLRT-1999-01364). F. Mendes was supported by Fundação para a Ciência e a Tecnologia with a Ph.D. grant (SFRH/ BD/ 8337/ 2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Soares Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, F.S., González-Pajuelo, M., Cordier, H. et al. 1,3-Propanediol production in a two-step process fermentation from renewable feedstock. Appl Microbiol Biotechnol 92, 519–527 (2011). https://doi.org/10.1007/s00253-011-3369-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3369-1

Keywords

Navigation