Skip to main content

Advertisement

Log in

Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

When Pseudomonas mendocina NK-01 was cultivated in a 200-L fermentor using glucose as carbon source, 0.316 g L−1 medium-chain-length polyhydroxyalkanoate (PHAMCL) and 0.57 g L−1 alginate oligosaccharides (AO) were obtained at the end of the process. GC/MS was used to characterize the PHAMCL, which was found to be a polymer mainly consisting of 3HO (3-hydroxyoctanoate) and 3HD (3-hydroxydecanoate). T m and T g values for the PHAMCL were 51.03°C and −41.21°C, respectively, by DSC. Its decomposition temperature was about 300°C. The elongation at break was 700% under 12 MPa stress. MS and GPC were also carried out to characterize the AO which had weight-average molecular weights of 1,546 and 1,029 Da, respectively, for the two main components at the end of the fermentation process. MS analysis revealed that the AO were consisted of β-d-mannuronic acid and/or α-l-guluronic acid, and the β-d-mannuronic acid and/or α-l-guluronic acid residues were partially acetylated at position C2 or C3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbial Rev 54:450–472

    CAS  Google Scholar 

  • Casini E, Rijk TC, Waard P, Eggink G (1997) Synthesis of poly(hydroxyalkanoate) from hydrolyzed linseed oil. J Environ Polym Degrad 5:153–158

    CAS  Google Scholar 

  • Chaki T, Kakimi H, Shibata A, Baba T (2006) Detection of alginate oligosaccharides from mollusks. Biosci Biotechnol Biochem 70:2793–2796

    Article  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Galindo E, Pena C, Nunez C, Segura D, Espin G (2007) Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 6:7

    Article  Google Scholar 

  • Gorin JPA, Spencer TJF (1966) Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 44:993–998

    Article  CAS  Google Scholar 

  • Green PR, Kemper J, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbuchel A, Rehm BHA (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3:208–213

    Article  CAS  Google Scholar 

  • Henry IN, Patricia CS (1967) Alginic acid degradation by eliminases from abalone hepatopancreas. J Biol Chem 242:845–851

    Google Scholar 

  • Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    Article  CAS  Google Scholar 

  • Iwamoto Y, Araki R, Iriyama K, Oda T, Fukuda H, Hayashida S, Muramatsu T (2001) Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Biosci Biotechnol Biochem 65:133–142

    Article  CAS  Google Scholar 

  • Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Lin CZ, Guan SH, Li HH, Yu GL, Gu CX, Li GQ (2007) The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities. Eur Polym J 43:3009–3015

    Article  CAS  Google Scholar 

  • Muller JM, Alegre RM (2007) Alginate production by Pseudomonas mendocina in a stirred draft fermenter. World J Microbiol Biotechnol 23:691–695

    Article  Google Scholar 

  • Otterlei M, Østgaard K, Skjåk-Bræk G, Smidsrød O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production monocytes stimulated with alginate. J Immunother 10:286–288

    Article  CAS  Google Scholar 

  • Paletta H, Steinbüchel A (2002) Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl Microbiol Biotechnol 58:229–236

    Article  Google Scholar 

  • Park JS, Huh TL, Lee YH (1997) Characteristics of cell growth and poly-β-hydroxybutyrate biosynthesis of Alcaligenes eutrophus transformants harboring cloned phbCAB genes. Enzyme Microb Technol 21:85–90

    Article  CAS  Google Scholar 

  • Pena C, Miranda L, Segura D, Nunez C, Espin G, Galindo E (2002) Alginate production by Azotobacter vinelandii mutants altered in poly-β-hydroxybutyrate and alginate biosynthesis. J Ind Microbiol Biotech 29:209–213

    Article  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  Google Scholar 

  • Rehm BHA, Steinbuchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  CAS  Google Scholar 

  • Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  CAS  Google Scholar 

  • Schurks N, Wingender J, Flemming HC, Mayer C (2002) Monomer composition and sequence of alginates from Pseudomonas aeruginosa. Int J Biol Macromol 30:105–111

    Article  CAS  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and ether lipid storage compounds. Arch Microbial 171:73–80

    Article  CAS  Google Scholar 

  • Spizzirri UG, Parisi OI, Iemma F, Cirillo F, Puoci F, Curcio M, Picci N (2010) Antioxidant-polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr Polym 79:333–340

    Article  Google Scholar 

  • Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhyalkanoic acid in bacteria. FEMS Microbiol Rev 103:217–230

    Article  Google Scholar 

  • Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Tian G, Wu Q, Sun SQ, Noda I, Chen GQ (2001) Study of thermal melting behavior of microbial polyhydroxyalkanoates using two-dimensional Fourier-transform infrared correlation spectroscopy. Appl Spectrosc 55:888–893

    Article  CAS  Google Scholar 

  • Tian WD, Hong K, Chen GQ, Wu Q, Zhang RQ, Huang WY (2000) Production of polyesters consisting of medium chain length 3-hydroxyalkanoic acids by Pseudomonas mendocina 0806 from various carbon sources. Antonie Leeuwenhoek 77:31–36

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters containing medium-chain length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    Article  CAS  Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–25

    Article  CAS  Google Scholar 

  • Trujillo-Roldan MA, Moreno S, Segura D, Galindo E, Espin G (2003) Alginate production by an Azotobacter vinelandii mutant unable to produce alginate lyase. Appl Microbiol Biotechnol 60:733–737

    Article  CAS  Google Scholar 

  • Wang HH, Li XT, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44:106–111

    Article  Google Scholar 

  • Williams SF, Peoples OP (1997) Making plastics green. Chem Brit 33:29–32

    CAS  Google Scholar 

  • Xiao L, Han F, Yang Z, Lu XZ, Yu WG (2006) A novel alginate lyase with high activity on acetylated alginate of Pseudomonas aeruginosa FRD1 from Pseudomonas sp. QD03. World J Microbiol Biotechnol 22:81–88

    Article  CAS  Google Scholar 

  • Yamada M, Matsumoto K, Nakai T, Taguchi S (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties. Biomacromolecules 10:677–681

    Article  CAS  Google Scholar 

  • Zhang ZQ, Yu GL, Guan HS, Zhao X, Du YG, Jiang XL (2004) Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr Res 399:1475–1481

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Key Project, Tianjin, China (09JCZDJC18400 and 09ZCKFSH00800), National Natural Science Foundation of China (31070039 and 51073081) and Tianjin Application of basic and advanced technology research project (11JCYBJC 09500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunjiang Song or Shufang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The standard curve of alginate purchased from a Tokyo Kaei Kogyo Co., Ltd. (Tokyo, Japan) treated with alginate lyase (DOC 28 kb)

Fig. S2

The sketch map for the acid hydrolysis of AO from Pseudomonas mendocina NK-01 and alginate purchased from Tokyo Kaei Kogyo Co., Ltd. (DOC 327 kb)

Table S1

UV absorption of alginate purchased from alginate purchased from a Tokyo Kaei Kogyo Co., Ltd. (Tokyo, Japan) treated with alginate lyase (DOC 32 kb)

Table S2

Result of BIOLOG analysis using GN plate (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Song, C., Kong, M. et al. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 92, 791–801 (2011). https://doi.org/10.1007/s00253-011-3333-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3333-0

Keywords

Navigation