Skip to main content
Log in

Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of humic acid (HA) on azo dye decolorization by Shewanella oneidensis MR-1 were studied. It was found that HA species isolated from different sources could all accelerate the decolorization of Acid Red 27 (AR27). Anoxic and anaerobic conditions were required for the enhancement of azo dye decolorization by HA. In the presence of 50 mg DOC L−1 Aldrich HA, 15–29% increases in decolorization efficiencies of azo dyes with different structures were achieved in 11 h. The enhancing effects increased with the increase of HA concentrations ranging from 25 to 150 mg DOC L−1, and the decolorization rates were directly proportional to the HA concentrations when they were below 100 mg DOC L−1. Lactate and formate were good electron donors for AR27 decolorization in the presence of HA. Both nitrate (0.1–3.0 mM) and nitrite (0.3–1.2 mM) inhibited AR27 decolorization in the presence of HA, and negligible decolorization was observed before their removal. Soluble FeCl3 could accelerate the decolorization process in the presence of HA, whereas insoluble hematite could not. These findings may affect the understanding of bioremediation of azo dye-polluted environments and help improve the treatment of azo dye wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. App Environ Microbiol 64:45074–45512

    Google Scholar 

  • Blümel S, Knackmuss J, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Article  Google Scholar 

  • Brigé A, Ba M, Borloo J, Buysschaert G, Devreese B, Beeumen JJ (2008) Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microbiol Biotechnol 1:40–52

    Google Scholar 

  • Brown MA, DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  • Cervantes FJ, de Bok FA, Duong-Dac T, Stams AJ, Lettinga G, Field JA (2002) Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 4:51–57

    Article  CAS  Google Scholar 

  • Cervantes FJ, Garcia-Espinosa A, Moreno-Reynosa MA, Rangel-Mendez JR (2010) Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. Environ Sci Technol 44:1747–1753

    Article  CAS  Google Scholar 

  • Cervantes FJ, Gonzalez-Estrella J, Márquez A, Alvarez LH, Arriaga S (2011) Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Biores Technol 102:2097–2100

    Article  CAS  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111

    Article  CAS  Google Scholar 

  • Chen X, Sun G, Xu M (2010) Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J Appl Microbiol 110: 580–586

    Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourization of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  Google Scholar 

  • Dubrow SF, Boardman GD, Michelsen DL (1996) Chemical pretreatment and aerobic–anaerobic degradation of textile dye wastewater. In: Reife A, Freeman HS (eds) Environmental chemistry of dyes and pigments. Wiley, New York, pp 75–102

    Google Scholar 

  • Dunnivant FM, Schwarzenbach RP, Macalady DL (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol 26:2133–2142

    Article  CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  CAS  Google Scholar 

  • Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G (2007a) Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella oneidensis S12. Appl Microbiol Biotechnol 74:230–238

    Article  CAS  Google Scholar 

  • Hong Y, Guo J, Xu Z, Xu M, Sun G (2007b) Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J Microbiol Biotechnol 17:428–437

    CAS  Google Scholar 

  • Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G (2007c) Respiration and growth of Shewanella decolorationis S12 with an azo compound as sole electron acceptor. Appl Environ Microbiol 73:64–72

    Article  CAS  Google Scholar 

  • Huang DY, Zhuang L, Cao WD, Xu W, Zhou SG, Li FB (2010) Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. J Soils Sediment 10:722–729

    Article  CAS  Google Scholar 

  • Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implication for electron shuttling. Environ Sci Technol 42:3563–3569

    Article  CAS  Google Scholar 

  • Khalid A, Muhammad A, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  CAS  Google Scholar 

  • Ko I, Kim JY, Kim KW (2005) Adsorption properties of soil humic and fulvic acids by hematite. Chem Spec Bioavailab 17:41–48

    Article  CAS  Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in the anaerobic reduction of azo dyes by Sphingomonas sp. BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63:3691–3694

    CAS  Google Scholar 

  • Liu G, Zhou J, Wang J, Zhou M, Lu H, Jin R (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Biores Technol 100:2791–2795

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Luan F, Burgos WD, Xie L, Zhou Q (2010) Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32. Envrion Sci Technol 44:184–190

    Article  CAS  Google Scholar 

  • O'Loughlin EJ (2008) Effects of electron transfer mediators on the bioreduction of lepidocrocite (γ-FeOOH) by Shewanella putrefaciens CN32. Envrion Sci Technol 42:6876–6882

    Article  Google Scholar 

  • O'Loughlin EJ, Gorski CA, Scherer MM, Boyanov MI, Kemner KM (2010) Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products. Environ Sci Technol 44:4570–4576

    Article  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196

    Article  CAS  Google Scholar 

  • Pearce CI, Christie R, Boothman C, von Canstein H, Guthrie JT, Lloyd JR (2006) Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol Bioeng 95:692–703

    Article  CAS  Google Scholar 

  • Ratasuk N, Nanny MA (2007) Characterization and quantification of reversible redox sites in humic substances. Environ Sci Technol 41:7844–7850

    Article  CAS  Google Scholar 

  • Ramos-Tejada MM, Ontiveros A, Viota JL, Durán JD (2003) Interfacial and rheological properties of humic acid/hematite suspensions. J Colloid Interface Sci 268:85–95

    Article  CAS  Google Scholar 

  • Rau J, Knackmus HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504

    Article  CAS  Google Scholar 

  • Royer RA, Burgos WD, Fisher AS, Jeon BH, Unz RF, Dempsey BA (2002) Enhancement of hematite bioreduction by natural organic matter. Environ Sci Technol 36:2897–2904

    Article  CAS  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The fucntion of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Engrs 42:138–157

    Article  CAS  Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ Sci Technol 32:2984–2989

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Van Trump JI, Sun Y, Coates JD (2006) Microbial interactions with humic substances. Adv Appl Microbiol 60:55–96

    Article  Google Scholar 

  • Wolf M, Kappler A, Jiang J, Meckenstock RU (2009) Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ Sci Technol 43:5679–5685

    Article  CAS  Google Scholar 

  • Wu J, Kim KS, Sung NC, Kim CH, Lee YC (2009) Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye Reactive Black 5. J Gen Appl Microbiol 55:51–55

    Article  CAS  Google Scholar 

  • Xu H, Heinze TM, Chen S, Cerniglia CE, Chen H (2007a) Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora. Appl Environ Microbiol 73:7759–7762

    Article  CAS  Google Scholar 

  • Xu M, Guo J, Kong X, Chen X, Sun G (2007b) Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 74:1342–1349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 51008044 and 50978040), Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation (20100471435 and 200902538), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT0814), and National Key Scientific and Technology Project for Water Pollution Treatment of China (2008ZX07208-004-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhou, J., Wang, J. et al. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl Microbiol Biotechnol 91, 417–424 (2011). https://doi.org/10.1007/s00253-011-3273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3273-8

Keywords

Navigation