Skip to main content

Advertisement

Log in

The influence of nanoscopically thin silver films on bacterial viability and attachment

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m−1, respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R a, R q and R max values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, Murphy CJ, Abbott NL (2010) Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomater 31:680–690

    Article  CAS  Google Scholar 

  • AshaRani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes DG, Fluke CJ (2008) Incorporating interactive three-dimensional graphics in astronomy research papers. New Astron 13:599–605

    Article  Google Scholar 

  • Barnes DG, Fluke CJ, Bourke PD, Parry OT (2006) An advanced, three-dimensional plotting library for astronomy. Publications of the Astronomical Society of Australia 23:82–93

    Article  Google Scholar 

  • Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9:357–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosetti M, Massè A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomater 23:887–892

    Article  CAS  Google Scholar 

  • Brutel De La Riviere A, Dossche KME, Birnbaum DE, Hacker R (2000) First clinical experience with a mechanical valve with silver coating. J Heart Valve Dis 9:123–130

    CAS  PubMed  Google Scholar 

  • Cai K, Müller M, Bossert J, Rechtenbach A, Jandt KD (2005) Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Appl Surf Sci 250:252–267

    Article  CAS  Google Scholar 

  • Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomater 27:5512–5517

    Article  CAS  Google Scholar 

  • Crawford R, Koopal LK, Ralston J (1987) Contact angles on particles and plates. Colloids Surf 27:57–64

    Article  CAS  Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling DP, Donnelly K, McConnell ML, Eloy R, Arnaud MN (2001) Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 398–399:602–606

    Article  Google Scholar 

  • Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Technol 123:133–145

    Article  Google Scholar 

  • Gibbins B, Warner L (2005) The role of antimicrobial silver nanotechnology. Med Device Diagn Ind pp. 27–33

  • Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomater 25:5547–5556

    Article  CAS  Google Scholar 

  • Groessner-Schreiber B, Hannig M, Dück A, Griepentrog M, Wenderoth DF (2004) Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur J Oral Sci 112:516–522

    Article  PubMed  Google Scholar 

  • Guy DW, Crawford RJ, Mainwaring DE (1996) The wetting behaviour of several organic liquids in water on coal surfaces. Fuel 75:238–242

    Article  CAS  Google Scholar 

  • Hachem RY, Wright KC, Zermeno A, Bodey GP, Raad II (2003) Evaluation of the silver iontophoretic catheter in an animal model. Biomater 24:3619–3622

    Article  CAS  Google Scholar 

  • Hardes J, Streitburger A, Ahrens H, Nusselt T, Gebert C, Winkelmann W, Battmann A, Gosheger G (2007) The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines. Sarcoma. doi:https://doi.org/10.1155/2007/26539

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407

    Article  CAS  PubMed  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in brl 3a rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Mitik-Dineva N, Wang J, Pham DK, Wright JP, Nicolau DV, Mocanasu RC, Crawford RJ (2008) Staleya guttiformis attachment on poly(tert-butylmethacrylate) polymeric surfaces. Micron 39:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Truong VK, Wang JY, Bemdt CC, Jones RT, Yusuf II, Peake I, Schmidt HW, Fluke C, Barnes D, Crawford RJ (2010) Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir 26:1973–1982

    Article  CAS  PubMed  Google Scholar 

  • Jeyachandran YL, Karunagaran B, Narayandass SK, Mangalaraj D, Jenkins TE, Martin PJ (2006) Properties of titanium thin films deposited by dc magnetron sputtering. Mat Sci Eng A 431:277–284

    Article  CAS  Google Scholar 

  • Joyce-Wöhrmann RM, Münstedt H (1999) Determination of the silver ion release from polyurethanes enriched with silver. Infection 27:S46–S48

    Article  PubMed  Google Scholar 

  • Kaiser N (2002) Review of the fundamentals of thin-film growth. Appl Opt 41:3053–3060

    Article  CAS  PubMed  Google Scholar 

  • Kelly PJ, Li H, Whitehead KA, Verran J, Arnell RD, Iordanova I (2009) A study of the antimicrobial and tribological properties of tin/ag nanocomposite coatings. Surf Coat Technol 204:1137–1140

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • Kora AJ, Manjusha R, Arunachalam J (2009) Superior bactericidal activity of sds capped silver nanoparticles: synthesis and characterization. Mater Sci Eng C 29:2104–2109

    Article  CAS  Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomater 26:2081–2088

    Article  CAS  Google Scholar 

  • Lamolle SF, Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ (2009) Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. J Biomed Mater Res A 88:581–588

    Article  CAS  PubMed  Google Scholar 

  • Liedberg H, Lundeberg T (1989) Assessment of silver-coated urinary catheter toxicity by cell culture. Urol Res 17:359–360

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49–121. doi:https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Mitik-Dineva N, Wang J, Mocanasu RC, Stoddart PR, Crawford RJ, Ivanova EP (2008) Impact of nano-topography on bacterial attachment. Biotechnol J 3:536–544

    Article  CAS  PubMed  Google Scholar 

  • Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP (2009) Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol 58:268–273

    Article  CAS  PubMed  Google Scholar 

  • Modak SM, Fox CL Jr (1973) Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22:2391–2404

    Article  CAS  PubMed  Google Scholar 

  • Öner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16:7777–7782

    Article  CAS  Google Scholar 

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713

    Article  CAS  PubMed  Google Scholar 

  • Samokhvalov A, Nair S, Duin EC, Tatarchuk BJ (2010) Surface characterization of ag/titania adsorbents. Appl Surf Sci 256:3647–3652

    Article  CAS  Google Scholar 

  • Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Zhao Q (2010) Influence of reducers on nanostructure and surface energy of silver coatings and bacterial adhesion. Surf Coat Technol 204:1288–1294

    Article  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  PubMed  Google Scholar 

  • Sreekumari KR, Nandakumar K, Takao K, Kikuchi Y (2003) Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion. ISIJ Int 43:1799–1806

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Stobie N, Duffy B, Hinder SJ, McHale P, McCormack DE (2009) Silver doped perfluoropolyether-urethane coatings: antibacterial activity and surface analysis. Colloids Surf B Biointerfaces 72:62–67

    Article  CAS  PubMed  Google Scholar 

  • Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP (2010) The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomater 31:3674–3683

    Article  CAS  Google Scholar 

  • Van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  • Vik H (1986) Neuropathia caused by silver absoprtion from arthroplasty cement. Lancet 1:872

    Google Scholar 

  • Wang YP, Yeh CT (1991) Electron paramagnetic resonance study of the interactions of oxygen with silver/titania. J Chem Soc Faraday Trans 87:345–348

    Article  CAS  Google Scholar 

  • Wang HB, Wei QF, Wang JY, Hong JH, Zhao XY (2008a) Sputter deposition of nanostructured antibacterial silver on polypropylene non-wovens. Surf Eng 24:70–74

    Article  CAS  Google Scholar 

  • Wang JY, Ghantasala MK, McLean RJ (2008b) Bias sputtering effect on ultra-thin smco5 films exhibiting large perpendicular coercivity. Thin Solid Films 517:656–660

    Article  CAS  Google Scholar 

  • Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams DF (1989) The biocompatibility of silver. Crit Rev Biocompat 5:221–243

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Advanced Manufacturing Co-operative Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena P. Ivanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1a

SEM, XPS and EDX spectra of silver coatings of 3 and 150 nm thicknesses. Shows typical SEM images of the silver films. Peaks in the EDX spectra indicating silica are due to the detection of the substrate beneath the silver coatings (GIF 176 kb)

Fig. S1b

SEM, XPS and EDX spectra of silver coatings of 3 and 150 nm thicknesses. Shows high-resolution XPS spectra of Ag 3d and O 1s on 3 nm (left) and 150 nm (right). Peaks in the EDX spectra indicating silica are due to the detection of the substrate beneath the silver coatings (GIF 236 kb)

Fig. S1c

SEM, XPS and EDX spectra of silver coatings of 3 and 150 nm thicknesses. Shows typical distribution maps (above) showing uniform distribution of the silver over the coating area (white dots) and EDX spectra (below). Peaks in the EDX spectra indicating silica are due to the detection of the substrate beneath the silver coatings (GIF 257 kb)

Fig. S2

Silver ion migration from silver films into PBS medium at regular intervals over 18 h as quantified by ICP-TOF-MS (GIF 46 kb)

Fig. S3

AFM surface roughness analysis showing two dimensional AFM images and corresponding surface profiles of 3 nm (left) and 150 nm (right) silver coatings on approximately 10 × 10 μm scanned areas and three-dimensional visualisation of the silver coating surfaces of 3 nm (left bottom) and 150 nm (right bottom) (GIF 2200 kb)

Fig. S4

AFM analysis of height distribution on the 3- and 150-nm silver film surfaces. Highlight in yellow areas indicates the characteristics height for each type of the surfaces (JPEG 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.P., Hasan, J., Truong, V.K. et al. The influence of nanoscopically thin silver films on bacterial viability and attachment. Appl Microbiol Biotechnol 91, 1149–1157 (2011). https://doi.org/10.1007/s00253-011-3195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3195-5

Keywords

Navigation