Skip to main content
Log in

Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg−1) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characterized phytase with a known crystal structure, was selected for mutagenesis—its Gly73 was replaced with Arg, Asp, Glu, Ser, Thr, Leu, or Tyr. The results show that the specific activities of all of the corresponding EcAPPA mutants (17–2,400 U mg−1) were less than that of the wild-type phytase (3,524 U mg−1), and the activity levels were approximately proportional to the molecular volumes of the substituted residues’ side chains. Site-directed replacement of Arg79 in YeAPPA (corresponding to Gly73 of EcAPPA) with Ser, Leu, and Gly largely increased the specific activity, which further verified the key role of the residue at position 79 for determining phytase activity. Thus, a new determinant that influences the catalytic efficiency of HAP phytases has been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Fu D, Huang H, Luo H, Wang Y, Yang P, Meng K, Bai Y, Wu N, Yao B (2008) A highly pH-stable phytase from Yersinia kristeensenii: cloning, expression, and characterization. Enzyme Microb Technol 42:499–505

    Article  CAS  Google Scholar 

  • Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, Yuan T, Yao B (2009) Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioeng 103:857–864

    Article  CAS  Google Scholar 

  • Garrett JB, Kretz KA, O'Donoghue E, Kerovuo J, Kim W, Barton NR, Hazlewood GP, Short JM, Robertson DE, Gray KA (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70:3041–3046

    Article  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  • Holman WI (1943) A new technique for the determination of phosphorus by the molybdenum blue method. Biochem J 37:256–259

    Article  CAS  Google Scholar 

  • Huang H, Luo H, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350:884–889

    Article  CAS  Google Scholar 

  • Jenuth JP (2000) The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol 132:301–312

    CAS  PubMed  Google Scholar 

  • Kemme PA, Radcliffe JS, Jongbloed AW, Mroz Z (1997) The effects of sow parity on digestibility of proximate components and minerals during lactation as influenced by diet and microbial phytase supplementation. J Anim Sci 75:2147–2153

    Article  CAS  Google Scholar 

  • Kim T, Mullaney EJ, Porres JM, Roneker KR, Crowe S, Rice S, Ko T, Ullah AH, Daly CB, Welch R, Lei XG (2006) Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol 72:4397–4403

    Article  CAS  Google Scholar 

  • Kostrewa D, Gruninger-Leitch F, D'Arcy A, Broger C, Mitchell D, van Loon AP (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat Struct Biol 4:185–190

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lehmann M, Lopez-Ulibarri R, Loch C, Viarouge C, Wyss M, van Loon AP (2000) Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci 9:1866–1872

    Article  CAS  Google Scholar 

  • Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H (2007) Phytase: source, structure and application. In: Polaina J, MacCabe AP (eds) Industrial enzymes: source, structure and application, 1st edn. Springer, Netherlands, pp 505–529

    Chapter  Google Scholar 

  • Lim D, Golovan S, Forsberg CW, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7:108–113

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Li J, Li C, Xiao W, Yuan D, Wan G, Ma L (2008) Site-directed mutagenesis by combination of homologous recombination and DpnI digestion of the plasmid template in Escherichia coli. Anal Biochem 373:389–391

    Article  CAS  Google Scholar 

  • Luo H, Yao B, Yuan T, Wang Y, Shi X, Wu N, Fan Y (2004) Overexpression of Escherichia coli phytase with high specific activity. Chin J Biotechnol 20:78–84

    CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  Google Scholar 

  • Nayeem A, Chiang SJ, Liu SW, Sun Y, You L, Basch J (2009) Engineering enzymes for improved catalytic efficiency: a computational study of site mutagenesis in epothilone-B hydroxylase. Protein Eng Des Sel 22:257–266

    Article  CAS  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Food Res 28:1–92

    Article  CAS  Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41

    Article  CAS  Google Scholar 

  • Tomschy A, Wyss M, Kostrewa D, Vogel K, Tessier M, Hofer S, Burgin H, Kronenberger A, Remy R, van Loon AP, Pasamontes L (2000a) Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett 472:169–172

    Article  CAS  Google Scholar 

  • Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, van Loon AP, Pasamontes L (2000b) Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci 9:1304–1311

    Article  CAS  Google Scholar 

  • Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon AP, Pasamontes L, Wyss M (2002) Engineering of phytase for improved activity at low pH. Appl Environ Microbiol 68:1907–1913

    Article  CAS  Google Scholar 

  • Ullah AH, Gibson DM (1987) Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91

    CAS  Google Scholar 

  • Ullah AH, Cummins BJ, Dischinger HC Jr (1991) Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochem Biophys Res Commun 178:45–53

    Article  CAS  Google Scholar 

  • van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem 266:2313–2319

    PubMed  Google Scholar 

  • Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  CAS  Google Scholar 

  • Yi Z, Kornegay ET, Ravindran V, Denbow DM (1996) Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult Sci 75:240–249

    Article  CAS  Google Scholar 

  • Zhang W, Lei XG (2008) Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl Microbiol Biotechnol 77:1033–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key Program of Transgenic Plant Breeding (2009ZX08019-002B) and the Agricultural Science and Technology Conversion Funds (2008GB23260388) and the Earmarked Fund for Modern Agro-industry Technology Research System (NYCYTX-42-G2-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Additional information

Dawei Fu and Zhongyuan Li contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, D., Li, Z., Huang, H. et al. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Appl Microbiol Biotechnol 90, 1295–1302 (2011). https://doi.org/10.1007/s00253-011-3171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3171-0

Keywords

Navigation