Skip to main content
Log in

Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have previously reported that the cultivation of yeast cells with soy peptides can improve the tolerance of yeast to freeze–thaw stress (Izawa et al. Appl Microbiol Biotechnol 75:533–538, 2007), indicating that soy peptides can modify the characteristics of yeast cells. To gain a greater understanding of the potencies of soy peptides, we further investigated the effects of cultivation with soy peptides on yeast physiology and found that soy peptides repress the formation of lipid bodies (also called lipid droplets or lipid particles), in which neutral lipids are accumulated. Compared with casein peptone, bacto peptone, yeast nitrogen base, and free amino acid mixtures having the same amino acid composition as soy peptides, cultivation with soy peptides caused decreased levels of mRNAs of neutral lipid synthesis-related genes, such as DGA1, and repressed the formation of lipid bodies and accumulation of triacylglycerol. These results indicate that soy peptides affect the lipid metabolism in yeast cells, and also demonstrate a potentiality of edible natural ingredients as modifiers of the characteristics of food microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: A Cold Spring Harbor Laboratory course manual, 2005th edn. CSHL, New York

    Google Scholar 

  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–6448

    CAS  Google Scholar 

  • Beller M, Thiel K, Thul PJ, Jäckle H (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182

    Article  CAS  Google Scholar 

  • Czabany T, Wagner A, Zweytick D, Lohner K, Erich L, Ingolic I, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074

    Article  CAS  Google Scholar 

  • Digel M, Ehehalt R, Füllekurg J (2010) Lipid droplets lighting up: insights from live microscopy. FEBS Lett 584:2168–2175

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanly GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  Google Scholar 

  • Hori G, Wang MF, Chan YC, Komatsu T, Wong Y, Chen TH, Yamamoto K, Nagaoka S, Yamamoto S (2001) Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem 65:72–78

    Article  CAS  Google Scholar 

  • Izawa S, Ikeda K, Takahashi N, Inoue Y (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 75:533–538

    Article  CAS  Google Scholar 

  • Kahana JA, Schlenstedt G, Evanchuk DM, Geiser JR, Hoyt MA, Silver PA (1999) The yeast dynactin complex is involved in portioning the mitotic spindle between mother and daughter cells during anaphase B. Mol Biol Cell 9:1741–1756

    Google Scholar 

  • Kamisaka Y, Noda N, Sakai T, Kawasaki K (1999) Lipid bodies and lipid body formation in an oleaginous fungus. Mortierella ramanniana var. angulispora. Biochim Biophys Acta 1438:185–198

    CAS  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Shibakami M (2010) Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Δsnf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biotechnol 88:105–115

    Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K (1990) Construction of uracil and tryptophan auxotrophic mutants from sake yeast by disruption of URA3 and TRP1 genes. Agric Biol Chem 54:2979–2987

    CAS  Google Scholar 

  • Kitagawa S, Mukai N, Furukawa Y, Adachi K, Mizuno A, Iefuji H (2008) Effect of soy peptide on the beer brewing. J Biosci Bioeng 105:360–366

    Article  CAS  Google Scholar 

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428

    Article  CAS  Google Scholar 

  • Martinez-Villaluenga C, Bringe NA, Berhow MA, Gonzalez de Mejia E (2008) β-conglycinin embeds active peptides that inhibit lipid accumulation in 3 T3-L1 adipocytes in vitro. J Agric Food Chem 56:10533–10543

    Article  CAS  Google Scholar 

  • Martinez-Villaluenga C, Rupasinghe SG, Schuller MA, Gonzalez de Mejia E (2010) Peptides from purified soybean β-conglycinin inhibit fatty acid synthase by interaction with thioesterase catalytic domain. FEBS J 277:1481–1493

    Article  CAS  Google Scholar 

  • Mochizuki Y, Maebuchi M, Kohno M, Hirotsuka M, Wadahama H, Moriyama T, Kawada T, Urade R (2009) Changes in lipid metabolism by soy β - conglycinin-derived peptides in HepG2 cells. J Agric Food Chem 57:1473–1480

    Article  CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  Google Scholar 

  • Nishiura H, Imai H, Nakao H, Tsukino H, Kuroda Y, Katoh T (2002) Genetically modified food (food derived from biotechnology):current and future trends in public acceptance and safety assessment. Nippon Koshu Eisei Zasshi 49:1135–1141

    Google Scholar 

  • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  CAS  Google Scholar 

  • Ogasawara M, Tsuruta K, Arao S (2002) Flame photometric detector for thin-layer chromatography. J Chromatogr A 973:151–158

    Article  CAS  Google Scholar 

  • Sandanger L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  Google Scholar 

  • Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092

    Article  CAS  Google Scholar 

  • Sorger D, Daum G (2002) Synthesis of triacylglycerols by the acyl-coenzyme A: diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184:519–524

    Article  CAS  Google Scholar 

  • Sturley SL, Young TW (1988) Extracellular protease activity in a strain of Saccharomyces cerevisiae. J Inst Brew 94:23–27

    CAS  Google Scholar 

  • Takenaka A, Annaka H, Kimura Y, Aoki H, Igarashi K (2003) Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Biosci Biotechnol Biochem 67:278–283

    Article  CAS  Google Scholar 

  • Tsuruki T, Takahata K, Yoshikawa M (2004) A soy-derived immunostimulating peptide inhibits etoposide-induced alopecia in neonatal rats. J Invest Dermatol 122:848–850

    Article  CAS  Google Scholar 

  • Uzogara SG (2000) The impact of genetic modification of human foods in the 21st century: a review. Biotechnol Adv 18:179–206

    Article  CAS  Google Scholar 

  • Valachovic M, Hronská L, Hapala I (2001) Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microb Lett 97:41–45

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Fuji Foundation for Protein Research and the Iijima Memorial Foundation for the Promotion of Food Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Izawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, K., Kitagawa, S., Tada, T. et al. Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl Microbiol Biotechnol 89, 1971–1977 (2011). https://doi.org/10.1007/s00253-010-3001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3001-9

Keywords

Navigation