Skip to main content
Log in

Bioavailability of organic compounds solubilized in nonionic surfactant micelles

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Whether direct availability of organic compound solubilized in nonionic surfactant micelles (bioavailability) in a bioremediation or biotransformation process is uncertain to some extent, which is partially attributed to the difficulty by direct experimental determination. In another point of view, it should be ascribed to the fuzzy concept about the solubilization of organic compound in a nonionic surfactant micelle aqueous solution. In this mini-review, the solubilization of organic compound in surfactant micelles aqueous solution is fully discussed; especially saturated solubilization and unsaturated solubilization have been emphasized. Then the current methods for estimation of bioavailability of organic compounds solubilized in micelles are introduced, in which the possible drawbacks of each method are stressed. Finally, the conclusion that organic compound solubilized in micelles is unavailable directly by microbes has been drawn and the intensification of bioremediation or biotransformation by nonionic surfactant micelle aqueous solution is contributed to enhancement of the hydrophobic organic compounds dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernardez LA (2008) Dissolution of polycyclic aromatic hydrocarbons from a non-aqueous phase liquid into a surfactant solution using a rotating disk apparatus. Colloids Surf A 320:175–182

    Article  CAS  Google Scholar 

  • Bernardez LA (2009) A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35. Bioprocess Biosyst Eng 32:415–424

    Article  CAS  Google Scholar 

  • Berti D, Randazzo D, Briganti F, Scozzafava A, Gennaro PD, Galli E, Bestetti G, Baglioni P (2002) Nonionic micelles promote whole cell bioconversion of aromatic substrates in an aqueous environment. Langmuir 18:6015–6020

    Article  CAS  Google Scholar 

  • Brown D (2007) Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environ Sci Technol 41:1194–1199

    Article  CAS  Google Scholar 

  • Christian SD, Tucher EE, Lane EH (1981) Precise vapor pressure measurements of the solubilization of cyclohexane by sodium octyl sulfate and sodium actyl sulfate micelles. J Colloid Interface Sci 84(2):423–432

    Article  CAS  Google Scholar 

  • Christian S, Smith GA, Tucker EE (1985) Semiequilibrium dialysis: a new method for measuring the solubilization of organic solutes by aqueous surfactant solutions. Langmuir 1:564–567

    Article  Google Scholar 

  • Dai Z, Wang Z, Xu J-H, Qi H (2010) Assessing bioavailability of the solubilization of organic compound in nonionic surfactant micelles by dose–response analysis. Appl Microbiol Biotechnol 88:327–339

    Article  CAS  Google Scholar 

  • Dupont-Leclercq L, Giroux S, Henry B, Rubini P (2007) Solubilization of amphiphilic carboxylic acids in nonionic micelles: determination of partition coefficients from pKa measurements and NMR experiments. Langmuir 23:10463–10470

    Article  CAS  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25(1):127–133

    Article  CAS  Google Scholar 

  • Ergican E, Geco H (2008) Nonlinear two-phase equilibrium model for the binding of arsenic anions to cationic micelles. J Membrane Sci 325:69–80

    Article  CAS  Google Scholar 

  • Grimberg SJ, Aitken MD, Stringfellow WT (1994) The influence of surfactant on the rate of phenanthrene mass transfer into water. Water Sci Technol 30(7):23–30

    CAS  Google Scholar 

  • Grimberg SJ, Miller CM, Aitken MD (1996a) Surfactant-enhanced dissolution of phenanthrene into water for laminar flow conditions. Environ Sci Technol 30:2967–2974

    Article  CAS  Google Scholar 

  • Grimberg SJ, Stringfellow WT, Aitken MD (1996b) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62(7):2387–2392

    CAS  Google Scholar 

  • Guha S, Jaffe PR (1996a) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30(4):1382–1391

    Article  CAS  Google Scholar 

  • Guha S, Jaffe PR (1996b) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30(4):605–611

    Article  CAS  Google Scholar 

  • Guha S, Jaffe P, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32:2317–2324

    Article  CAS  Google Scholar 

  • Haddou B, Canselier JP, Gourdon C (2006) Cloud point extraction of phenol and benzyl alcohol from aqueous stream. Separ Purif Technol 50:114–121

    Article  CAS  Google Scholar 

  • Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extraction): theory and applications. Criti Rev Anal Chem 24(2):133–177

    Article  CAS  Google Scholar 

  • Jahan K, Ahmed T, Maier W (1999) Modeling the influence of nonionic surfactants on biodegradation of phenanthrene. Water Res 33(9):2181–2193

    Article  CAS  Google Scholar 

  • Jang SA, Lee DS, Lee MW, Woo SH (2007) Toxicity of phenanthrene dissolved in nonionic surfactant solutions to Pseudomonas putida P2. FEMS Microbiol Lett 267:194–199

    Article  CAS  Google Scholar 

  • Kandori K, McGreevy RJ, Schechter RS (1989) Solubilization of phenol in polyethoxylated nonionic micelles. J Colloid Interface Sci 132(2):395–402

    Article  CAS  Google Scholar 

  • Katsuta S, Saitoh K (1998) A micellar electrokinetic chromatographic method for determination of solubilization isotherms in surfactant micelles. Anal Chem 70:1389–1393

    Article  CAS  Google Scholar 

  • Keane A, Lau PCK, Ghoshal S (2008) Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants. Biotechnol Bioeng 99(1):86–98

    Article  CAS  Google Scholar 

  • Lee HJ, Lee MW, Lee DS, Woo SH, Park JM (2007) Estimation of direct-contact fraction for phenanthrene in surfactant solutions by toxicity measurement. J Biotechnol 131:448–457

    Article  CAS  Google Scholar 

  • Li J-L, Chen B-H (2002) Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chem Eng Sci 57:2825–2835

    Article  CAS  Google Scholar 

  • Mackay RA (1987) Solubilization. In: Schick MJ (ed) Nonionic surfactants physical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Myers D (1999) Surfaces, interfaces and colloids: principles and applications, 2nd edn. Wiley, New York, pp p271–273

    Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58

    Article  CAS  Google Scholar 

  • Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  • Randazzo D, Berti D, Briganti F, Baglioni P, Scozzafava A, Gennaro PD, Galli E, Bestetti G (2001) Efficient polycyclic aromatic hydrocarbons dihydroxylation in direct micellar systems. Biotechnol Bioeng 74(3):240–248

    Article  CAS  Google Scholar 

  • Rouse J, Sabatini D, Deeds N, Ericbrown R (1995) Micellar solubilization of unsaturated hydrocarbon: semiequilibrium dialysis. Environ Sci Technol 29:2484–2489

    Article  CAS  Google Scholar 

  • Sakulwongyai S, Trakultumupatam S, Scamehron JF, Oswan S, Christian SD (2000) Use of a surfactant coacervate phase to extraction of chlorinated aliphatic compounds from water: extraction of chlorinated ethanes and quantitative comparison to solubilization in micelles. Langmuir 16(22):8226–8230

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:229A–231A

    Article  Google Scholar 

  • Sepulveda L (1974) Absorbance of solutions of cationic micelles and organic anions. J Colloid Interface Sci 46(3):372–379

    Article  CAS  Google Scholar 

  • Sjoblom J, Stenius P, Danielession I (1987) Phase equilibrium of nonionic surfactants and the formation of microemulsion. In: Schick MJ (ed) Nonionic surfactants physical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Styrishave B, Mortensen M, Krogh PH, Andersen O, Jensen J (2008) Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, Folsomia candida, under various soil conditions. Environ Sci Technol 42:1332–1336

    Article  CAS  Google Scholar 

  • Swe MM, Yu LE, Hung K-C, Chen B-H (2006) Solubilization of selected polycyclic aromatic compounds by nonionic surfactants. J Surfactants Deterg 9(3):237–244

    Article  CAS  Google Scholar 

  • Ucbiyama H, Tucker CSD, EE SJF (1993) A modified semiequilibrium dialysis method for studying solubilization in surfactant micelles: testing the semiequilibrium assumption. J Phys Chem 97:10868–10871

    Article  Google Scholar 

  • Volkering F, Breure A, van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61(5):1699–1705

    CAS  Google Scholar 

  • Wang Z (2007) The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl Microbiol Biotechnol 75:1–10

    Article  CAS  Google Scholar 

  • Wang Z (2009) Predicting organic compound recovery efficiency of cloud point extraction with its quantitative structure-solubilization relationship. Colloids Surf A 349:214–217

    Article  CAS  Google Scholar 

  • Wang Z, Dai Z (2010) Extractive microbial fermentation in cloud point system. Enzyme Microb Technol 46:407–418

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Li D (2003a) Determination of solubilization of phenol of coacervate phase in cloud point extraction. Colloids Surf A 216(1–3):207–214

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Li D (2003b) Solubilization of phenol in coacervate phase of cloud point extraction. J Chem Ind Eng China 54(10):1387–1390

    CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004a) Microbial transformation hydrophobic compound in cloud point system. J Mol Catal B Enzym 27:147–153

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004b) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13

    Article  Google Scholar 

  • Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells Mycobacterium in cloud point system. Process Biochem 41(3):557–561

    Article  CAS  Google Scholar 

  • Wang Z, Xu J-H, Liang R, Qi H (2008) A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem Eng J 41:24–29

    Article  Google Scholar 

  • Xue Y, Qian C, Wang Z, Xu J-H, Yang R, Qi H (2009) Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology. Appl Microbiol Biotechnol 85(1):517–524

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 20676080; 21076123) and Morning Star Promotive Program for Young Scholar of Shanghai Jiao Tong University, Shanghai, China (No. T241460631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z. Bioavailability of organic compounds solubilized in nonionic surfactant micelles. Appl Microbiol Biotechnol 89, 523–534 (2011). https://doi.org/10.1007/s00253-010-2938-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2938-z

Keywords

Navigation