Skip to main content
Log in

Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria emit a wealth of volatiles. The combination of coupled gas chromatography/mass spectrometry (GC/MS) and proton-transfer-reaction mass spectrometry (PTR-MS) analyses provided a most comprehensive profile of volatiles of the rhizobacterium Serratia odorifera 4Rx13. An array of compounds, highly dominated by sodorifen (approximately 50%), a bicyclic oligomethyl octadiene, could be detected. Other volatiles included components of the biogeochemical sulfur cycle such as dimethyl disulfide (DMDS), dimethyl trisulfide and methanethiol, terpenoids, 2-phenylethanol, and other aromatic compounds. The composition of the bouquet of S. odorifera did not change significantly during the different growth intervals. At the beginning of the stationary phase, 60 μg of volatiles per 24 h and 60 easily detectable components were released. Ammonia was also released by S. odorifera, while ethylene, nitric oxide (NO) and hydrogen cyanide (HCN) could not be detected. Dual culture assays proved that 20 μmol DMDS and 2.5 μmol ammonia, individually applied, represent the IC50 concentrations that cause negative effects on Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Alstrom S (2001) Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Aochi YO, Farmer WJ (2005) Impact of soil microstructure on the molecular transport dynamics of 1, 2-dichloroethane. Geoderma 127:137–153

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizoshere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  CAS  Google Scholar 

  • Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    Article  CAS  Google Scholar 

  • Boamfa EI, Steeghs MML, Cristescu SM, Harren FJM (2004) Trace gas detection from fermentation processes in apples and rice; a comparison between proton-transfer-reaction mass spectrometry and laser photoacoustics. Int J Mass Spectrom 239:193–201

    Article  CAS  Google Scholar 

  • Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186

    Article  CAS  Google Scholar 

  • Castric KF, Castric PA (1983) Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45:701–702

    CAS  Google Scholar 

  • Chuankun X, Minghe M, Leming Z, Kegin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  CAS  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  Google Scholar 

  • Cristescu SM, Persijn ST, Te Lintel Hekkert S, Harren FJM (2008) Laser-based systems for trace gas detection in life sciences. Appl Phys B 92:343–349

    Article  CAS  Google Scholar 

  • Critchley A, Elliott T, Harrison G, Mayhew C, Thompson J, Worthington T (2004) The proton transfer reaction mass spectrometer and its use in medical science: applications to drug assays and the monitoring of bacteria. Int J Mass Spectrom 239:235–241

    Article  CAS  Google Scholar 

  • de Gouw J, Warneke C, Karl T, Eerdekens G, van der Veen C, Fall R (2003) Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int J Mass Spectrom 223:365–382

    Article  Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2004) Biosynthesis of volatiles by the Myxobacterium Myxococcus xanthus. Chem Biol Chem 5:778–787

    CAS  Google Scholar 

  • Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865

    Article  CAS  Google Scholar 

  • Drath M, Kloft N, Batschaer A, Marin K, Novak J, Forchhammer K (2008) Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Physiol 147:206–215

    Article  CAS  Google Scholar 

  • Dugravot S, Grolleau F, Macherel D, Rochetaing A, Hue B, Stankiewicz M, Huignard J, Lapied B (2003) Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect KATP channels. J Neurophysiol 90:259–270

    Article  CAS  Google Scholar 

  • Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8

    Article  CAS  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol 76:395–405

    CAS  Google Scholar 

  • Frankowski J, Berg G, Bahl H (2001) Mechanisms involved in the antifungal activity of the rhizobacterium Serratia plymuthica. Biological control of fungal and plant pathogens IOBC bulletin 21:45–50

    Google Scholar 

  • Fukuda H, Ogawa T, Tanasse S (1993) Ethylene production by microorganisms. Adv Microb Physiol 35:275–306

    Article  CAS  Google Scholar 

  • Gallois A, Grimont PAD (1985) Pyrazines responsible for the potatolike odor produced by some Serratia and Cedecea strains. Appl Environ Microbiol 50:1048–1051

    CAS  Google Scholar 

  • Gautier H, Auger J, Legros C, Lapied B (2008) Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide. J Pharmacol Experim Therapeut 324:149–159

    Article  CAS  Google Scholar 

  • Grimont PAD, Grimont F, Richard C, Davis BR, Steigerwalt AG, Brenner DJ (1978) Desoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species, with a description of Serratia odorifera sp.nov. (type strain: ICPB 3995). Intern J Systematic Bacteriol 28:453–463

    Article  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotions due to rhizobacterial volatiles—an effect of CO2? FEBS Lett 583:3473–3477

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:4433–4400

    Google Scholar 

  • Lewis BA (1985) Inhibition of Candida albicans by methanethiol produced by Brevibacterium linens. Microbiologica 8:387–390

    CAS  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998a) Proton-transfer reaction mass spectrometry: online monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    Article  CAS  Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998b) Online monitoring of volatile organic compounds at pptv levels by means of Proton-transfer reaction mass spectrometry. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:351–356

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environm Microbiol 11:844–854

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  CAS  Google Scholar 

  • Piechulla B, Pott MB (2003) Plant scents—mediator of inter- and intraorganismic communication. Planta 217:687–689

    Article  CAS  Google Scholar 

  • Rimbault A, Niel P, Virelizier H, Darbord JC, Leluan G (1988) l-methionine, a precursor of trace methane in some proteolytic clostridia. Appl Environ Microbiol 54:1581–1586

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  Google Scholar 

  • Salman A, Filgueiras H, Cristescu SM, Lopez-Lauri F, Harren FJM, Sallanon H (2009) Inhibition of wound-induced ethylene does not prevent red discoloration in fresh-cut endive (Cichorium intybus L.). Eur Food Res Technol 228:651–657

    Article  CAS  Google Scholar 

  • Schöller CEG, Gürtler H, Petersen R, Molin S, Wilkins K (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  Google Scholar 

  • Stall RE, Hall CB, Cook AA (1972) Relationship of ammonia to necrosis of pepper leaf tissue during colonization by Xanthomonas vesicatoria. Phytopathology 62:882–886

    Article  CAS  Google Scholar 

  • Steeghs MML, Moeskops BWM, van Swam K, Cristescu SM, Scheepers PTJ, Harren FJM (2006) On-line monitoring of UV-induced lipid peroxidation products from human skin in vivo using proton transfer reaction mass spectrometry. Int J Mass Spectrom 253:58–64

    Article  CAS  Google Scholar 

  • Steeghs MML, Cristescu SM, Munnik P, Zanen P, Harren FJM (2007) The suitability of tedlar bags for breath sampling in medical diagnostic research. Physiological Measurements 28:503–514

    Article  CAS  Google Scholar 

  • Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382

    Article  CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobionic conditions. EMBO J 8:351–358

    CAS  Google Scholar 

  • von Reuβ S, Kai M, Piechulla B, Francke W (2010) Octamethylbicyclo(3.2.1)octadienes from Serratia odorifera. Angew Chem Int Ed 49:2009–2010

    Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles of plant roots, fungi and rhizobacteria facilitate interactions between soil organisms. Planta 231:499–506

    Article  CAS  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Leeuwenhoek 81:357–364

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Experim Botany 52:487–511

    CAS  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contribution of volatile-producing bacteria in soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the students Falko Lange and Carolin Westendorf for initial investigations. We thank Claudio Valverde (University of Quilmes, Argentina) for providing the Pseudomonas wildtype and mutant strain and Aleksandra Laska-Oberndorff for technical assistance during the experiments in Nijmegen. This project was financially supported by the EU-FP6-project-026183, Life Science Trace Gas Facility to FvH/SC and the DFG to BP (PI 153/26-1) and to WF (FR 507/19-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Piechulla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Compilation of all compounds emitted by S. odorifera 4Rx13 as distinctly recorded by GC/MS (PDF 56 kb)

Table 2

Compilation of all compounds emitted by S. odorifera 4Rx13 as analyzed by PTR-MS (PDF 30 kb)

Fig. 1

Temporal volatile emission profiles of S. odorifera during 96 h of growth. Masses are indicated in each panel, m33 = methanol, m47 = ethanol, m79 = (benzene?), m95 = dimethyl disulfide, m127 = dimethyltrisulfide, m137 = monoterpene hydrocarbons. Emission intensity (μg h−1) of two independent cultures are depicted (black lines), emission of medium without bacteria (gray lines), CFU are indicated by solid dots. n = 3 (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, M., Crespo, E., Cristescu, S.M. et al. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88, 965–976 (2010). https://doi.org/10.1007/s00253-010-2810-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2810-1

Keywords

Navigation