Skip to main content
Log in

Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

WF146 protease, a thermophilic subtilase from thermophile Bacillus sp. WF146, suffers excessive autolysis in the presence of reducing agents. In this report, two autolytic sites of WF146 protease were modified by site-directed mutagenesis. The introduction of prolines into the autolytic sites increased the autolysis resistance of the enzyme under reducing conditions. The double mutant N63P/A66P displayed a 2.8-fold longer half-life at 80°C and higher hydrolytic activities than wild-type enzyme toward soluble (casein) and insoluble (keratin azure) substrates at high temperatures. In the presence of reducing agents, N63P/A66P was able to degrade feather at 80°C (∼3 h), with hydrolysis efficiency comparable to that of proteinase K at 50°C (∼24 h). Meanwhile, the mutant N63P/A66P had the ability to hydrolyze PrPSc-like prion protein at high temperatures. In virtue of these properties, N63P/A66P is of great interest to be used in recycling of keratinous wastes, such as feather, and disinfection of medical apparatus. In addition, our study may provide useful information needed to explore keratinolytic potential of thermophilic subtilases, even if they are produced by non-keratinolytic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnórsdóttir J, Helgadóttir S, Thorbjarnardóttir SH, Eggertsson G, Kristjánsson MM (2007) Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1774:749–755

    Google Scholar 

  • Arnórsdóttir J, Sigtryggsdóttir ÁR, Thorbjarnardóttir SH, Kristjánsson MM (2009) Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase. J Biochem 145:325–329

    Article  CAS  Google Scholar 

  • Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277:21140–21148

    Article  CAS  Google Scholar 

  • Bian Y, Liang X, Fang N, Tang XF, Tang B, Shen P, Peng Z (2006) The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. FEBS Lett 580:6007–6014

    Article  CAS  Google Scholar 

  • Brons-Poulsen J, Petersen NE, Horder M, Kristiansen K (1998) An improved PCR-based method for site directed mutagenesis using megaprimers. Mol Cell Probes 12:345–348

    Article  CAS  Google Scholar 

  • Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47:91–97

    Article  CAS  Google Scholar 

  • Evans KL, Crowder J, Miller ES (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46:1004–1011

    Article  CAS  Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    CAS  Google Scholar 

  • Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertlé T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340

    Article  CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  CAS  Google Scholar 

  • Hardy F, Vriend G, Veltman OR, van der Vinne B, Venema G, Eijsink VG (1993) Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 317:89–92

    Article  CAS  Google Scholar 

  • Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol 45:217–222

    Article  CAS  Google Scholar 

  • Kim JS, Kluskens LD, de Vos WM, Huber R, van der Oost J (2004) Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. J Mol Biol 335:787–797

    Article  CAS  Google Scholar 

  • King J, Laemmli UK (1971) Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol 62:465–477

    Article  CAS  Google Scholar 

  • Kluskens LD, Voorhorst WG, Siezen RJ, Schwerdtfeger RM, Antranikian G, van der Oost J, de Vos WM (2002) Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles 6:185–194

    Article  CAS  Google Scholar 

  • Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, Shih JC (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    Article  CAS  Google Scholar 

  • Lin X, Lee CG, Casale ES, Shih JC (1992) Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    CAS  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JC (1995) Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61:1469–1474

    CAS  Google Scholar 

  • Lin X, Shih J, Swaisgood HE (1996) Hydrolysis of feather keratin by immobilized keratinase. Appl Environ Microbiol 62:4273–4275

    CAS  Google Scholar 

  • Lin X, Wong SL, Miller ES, Shih JC (1997) Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol 19:134–138

    Article  CAS  Google Scholar 

  • Markert Y, Köditz J, Ulbrich-Hofmann R, Arnold U (2003) Proline versus charge concept for protein stabilization against proteolytic attack. Protein Eng 16:1041–1046

    Article  CAS  Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl Microbiol Biotechnol 82:941–950

    Article  CAS  Google Scholar 

  • Nakamura S, Tanaka T, Yada RY, Nakai S (1997) Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Eng 10:1263–1269

    Article  CAS  Google Scholar 

  • Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Hwang JK, Suhartono MT, Pyun YR (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178:538–547

    Article  CAS  Google Scholar 

  • Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    Article  CAS  Google Scholar 

  • Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408

    Article  CAS  Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  CAS  Google Scholar 

  • Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  CAS  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81

    Article  CAS  Google Scholar 

  • Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E, Nedkov P, Gousterova A, Cueff V, Godfroy A, Barbier G, Métro F, Chobert JM, Clayette P, Dormont D, Grosclaude J, Haertlé T (2004) Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and Streptomyces subspecies. J Agric Food Chem 52:6353–6360

    Article  CAS  Google Scholar 

  • Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269:142–153

    Article  CAS  Google Scholar 

  • Williams CM, Richter CS, Mackenzie JM, Shih JC (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    CAS  Google Scholar 

  • Wu J, Bian Y, Tang B, Chen X, Shen P, Peng Z (2004) Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops. FEMS Microbiol Lett 230:251–258

    Article  CAS  Google Scholar 

  • Yang YR, Zhu H, Fang N, Liang X, Zhong CQ, Tang XF, Shen P, Tang B (2008) Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41. FEBS Lett 582:2620–2626

    Article  CAS  Google Scholar 

  • Yin S, Yu S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Grassi J, Tien P, Sy MS (2006) Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J Biol Chem 281:10698–10705

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Grand Fundamental Research Program (973; 2004CG719606), the National Natural Science Foundation (30370018, 30470019, and 30870052), and the Specialized Research Fund for the Doctoral Program of Higher Education (20070486050) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Bian, Y., Tang, XF. et al. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions. Appl Microbiol Biotechnol 87, 999–1006 (2010). https://doi.org/10.1007/s00253-010-2534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2534-2

Keywords

Navigation