Skip to main content

Advertisement

Log in

Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel is an interesting alternative energy source and is used as substitute for petroleum-based diesel. Microorganisms have been used for biodiesel production due to their significant environmental and economic benefits. However, few researches have investigated the regulation of fatty acid composition of these microbial diesels. Fatty acid biosynthesis in Escherichia coli has provided a paradigm for other bacteria and plants. By overexpressing two genes (fabA and fabB) associated with unsaturated fatty acid (UFA) synthesis in E. coli, we have engineered an efficient producer of UFAs. Saturated fatty acid (SFA) contents decreased from 50.2% (the control strain) to 34.6% (the recombinant strain overexpressing fabA and fabB simultaneously) and the ratio of cis-vaccenate (18:1Δ11), a major UFA in E. coli, reached 51.1% in this recombinant strain. When an Arabidopsis thaliana thioesterase (AtFatA) was coexpressed with these two genes, 0.19 mmol l−1 fatty acids was produced by this E. coli strain after 18-h culture under shake-flask conditions. Free fatty acids made up about 37.5% of total fatty acid concentration in this final engineered strain carrying fabA, fabB, and AtFatA, and the ratio of UFA/SFA reached 2.3:1. This approach offers a means to improve the fatty acid composition of microdiesel and might pave the way for production of biodiesel equivalents using engineered microorganisms in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelson PH (1995) Renewable liquid fuels. Science 268:955

    Article  CAS  Google Scholar 

  • Aguilar PS, DeMendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    Article  CAS  Google Scholar 

  • Aguilar PS, Cronan JE, DeMendoza D (1998) A Bacillus subtilis induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200

    CAS  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  Google Scholar 

  • Apiradee H, Kalyanee P, Pongsathon P, Patcharaporn D, Matura S, Sanjukta S, Supapon C, Morakot T (2004) The expression of three desaturase genes of Spirulina platensis in Escherichia coli DH5α. Mol Biol Rep 31:177–189

    Article  CAS  Google Scholar 

  • Atsumi S, Wu T, Eckl E, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    Article  CAS  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole-cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Bloch K (1969) Enzymatic synthesis of monounsaturated fatty acids. Accounts Chem Res 2:193–202

    Article  CAS  Google Scholar 

  • Cahoon EB, Mills LA, Shanklin J (1996) Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. J Bacteriol 178:936–939

    CAS  Google Scholar 

  • Cao Y, Xian M, Yang J, Xu X, Liu W, Li L (2010) Heterologous expression of stearoyl-acyl carrier protein desaturase (S-ACP-DES) from Arabidopsis thaliana in Escherichia coli. Protein Expr Purif 69:209–214

    Article  CAS  Google Scholar 

  • Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259

    Article  CAS  Google Scholar 

  • DeMendoza D, Ulrich AK, Cronan JE (1983) Thermal regulation of membrane fluidity in Escherichia coli. J Biol Chem 258:2098–2101

    CAS  Google Scholar 

  • Demirba A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag 44:2093–2109

    Article  Google Scholar 

  • Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337

    Article  CAS  Google Scholar 

  • Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284:29526–29535

    Article  CAS  Google Scholar 

  • Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D (2009) Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol 139:169–175

    Article  CAS  Google Scholar 

  • Grogan DW, Cronan JE (1984) Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction. J Bacteriol 158:286–295

    CAS  Google Scholar 

  • Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    CAS  Google Scholar 

  • Heath RJ, White SW, Rock CO (2002) Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl Microbiol Biotechnol 58:695–703

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    Article  CAS  Google Scholar 

  • Kalscheuer K, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  • Kass LR, Bloch K (1967) On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci 58:1168–1173

    Article  CAS  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317

    Article  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Lowry RR, Tinsley IJ (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472

    Article  CAS  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  Google Scholar 

  • Magnuson K, Jackowski S, Rock CO, Cronan JE (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Mol Biol Rev 57:522–542

    CAS  Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    CAS  Google Scholar 

  • Marrakchi H, Zhang YM, Rock CO (2002a) Mechanistic diversity and regulation of type II fatty acid synthesis. Biochem Soc Trans 30:1050–1055

    Article  CAS  Google Scholar 

  • Marrakchi H, Choi KH, Rock CO (2002b) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  Google Scholar 

  • Mittelbach M, Remschmidt C (2004) Biodiesel—the comprehensive handbook. Boersedruck GmbH, Graz

    Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron trifluoride-methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  Google Scholar 

  • Park J, Kim D, Lee J, Park S, Kim Y, Lee J (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99:1196–1203

    Article  CAS  Google Scholar 

  • Ruiz JI, Ochoa B (1997) Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. J Lipid Res 38:1482–1489

    CAS  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34

    Article  CAS  Google Scholar 

  • Tamalampudi S, Talukder MM, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H (2007) Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida Antarctica. Appl Microbiol Biotechnol 75:387–395

    Article  CAS  Google Scholar 

  • Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF Homologues. J Biol Chem 279:34489–34495

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103

    Article  CAS  Google Scholar 

  • Zhang Y, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281:17541–17544

    Article  CAS  Google Scholar 

  • Zhu L, Cheng J, Luo B, Feng S, Lin J, Wang S, Cronan JE, Wang H (2009) Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol 9:119

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by CAS 100 Talents Program (KGCX2-YW-801). The authors would like to thank Dr. Yun Fa and Cong Zhang for GC analysis and Dr. Wenna Guan and Cong Wang for GC-MS analysis of fatty acid methyl esters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Additional information

Yujin Cao and Jianming Yang contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 3-h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 18:1, cis-vaccenic acid (GIF 350 kb)

High resolution image file (TIFF 399 kb)

Fig. S2

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 6 h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 17:0c, cis-methylene-9,10-hexadecanoic acid; 18:1, cis-vaccenic acid; 19:0c, cis-methylene-11,12-octadecanoic acid (GIF 369 kb)

High resolution image file (TIFF 237 kb)

Fig. S3

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 12 h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 17:0c, cis-methylene-9,10-hexadecanoic acid; 18:1, cis-vaccenic acid; 19:0c, cis-methylene-11,12-octadecanoic acid (GIF 399 kb)

High resolution image file (TIFF 425 kb)

Fig. S4

Gas chromatograms of free fatty acids obtained from different E. coli transformants. A, E. coli strain harboring pACYC-TE; B, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 18:1, cis-vaccenic acid (GIF 134 kb)

High resolution image file (TIFF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Yang, J., Xian, M. et al. Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes. Appl Microbiol Biotechnol 87, 271–280 (2010). https://doi.org/10.1007/s00253-009-2377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2377-x

Keywords

Navigation