Skip to main content
Log in

Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

System-wide “omics” approaches have been widely applied to study a limited number of laboratory strains of Saccharomyces cerevisiae. More recently, industrial S. cerevisiae strains have become the target of such analyses, mainly to improve our understanding of biotechnologically relevant phenotypes that cannot be adequately studied in laboratory strains. Most of these studies have investigated single strains in a single medium. This experimental layout cannot differentiate between generally relevant molecular responses and strain- or media-specific features. Here we analyzed the transcriptomes of two phenotypically diverging wine yeast strains in two different fermentation media at three stages of wine fermentation. The data show that the intersection of transcriptome datasets from fermentations using either synthetic MS300 (simulated wine must) or real grape must (Colombard) can help to delineate relevant from “noisy” changes in gene expression in response to experimental factors such as fermentation stage and strain identity. The differences in the expression profiles of strains in the different environments also provide relevant insights into the transcriptional responses toward specific compositional features of the media. The data also suggest that MS300 is a representative environment for conducting research on wine fermentation and industrially relevant properties of wine yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7:819–833

    CAS  PubMed  Google Scholar 

  • Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410

    Article  CAS  PubMed  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of baker’s yeast. Nat Biotechnol 15:1351–1357

    CAS  PubMed  Google Scholar 

  • Baichwal V, Cunningham T, Gatzek P, Kohlhaw G (1983) Leucine biosynthesis in yeast. Identification of two genes (LEU4, LEU5) that affect alpha-Isopropylmalate synthase activity and evidence that LEU1 and LEU2 gene expression is controlled by alpha-Isopropylmalate and the product of a regulatory gene. Curr Genet 7:369–377

    CAS  PubMed  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol 21:27–51

    CAS  Google Scholar 

  • Baxter SM, Rosenblum JS, Knutson S, Nelson MR, Montimurro JS, Di Gennaro JA, Speir JA, Burbaum JJ, Fetrow JS (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteomics 3:209–225

    CAS  PubMed  Google Scholar 

  • Beltran G, Novo M, Leberre V, Sokol S, Labourdette D, Guillamon JM, Mas A, François J, Rozes N (2006) Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res 6:1167–1183

    CAS  PubMed  Google Scholar 

  • Bely L, Sablayrolles J, Barre P (1990) Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic 40:319–324

    Google Scholar 

  • Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comp Biol 6:281–297

    CAS  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus or sulfur. J Biol Chem 278:3265–3274

    CAS  PubMed  Google Scholar 

  • Buckholz RG, Cooper TG (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast 7:913–923

    CAS  PubMed  Google Scholar 

  • Casalone E, Barberio C, Cavalieri D, Polsinelli M (2000) Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast 16:539–545

    CAS  PubMed  Google Scholar 

  • Caspar Hurlimann H, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18:4438–4445

    Google Scholar 

  • Cox KH, Tate JJ, Cooper TG (2002) Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae. J Biol Chem 277:37559–37566

    CAS  PubMed  Google Scholar 

  • de Boer M, Nielsen PS, Bebelman JP, Heerikhuizen H, Andersen HA, Planta RJ (2000) Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucl Acids Res 28:974–981

    PubMed  PubMed Central  Google Scholar 

  • Ehmann DE, Gehring AM, Walsh CT (1999) Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of alpha-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochem 38:6171–6177

    CAS  Google Scholar 

  • El Alami M, Messenguy F, Scherens B, Dubois E (2003) Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 49:457–468

    CAS  PubMed  Google Scholar 

  • Feller A, Ramos F, Pierard A, Dubois E (1999) In Saccharomyces cerevisae, feedback inhibition of homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene expression by Lys14p. Eur J Biochem 261:163–170

    CAS  PubMed  Google Scholar 

  • Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friden P, Schimmel P (1987) LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a group of leucine-specific genes. Mol Cell Biol 7:2708–2717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holst B, Lunde C, Lages F, Oliveira R, Lucas C, Kielland-Brandt MC (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124

    CAS  PubMed  Google Scholar 

  • Isnard AD, Thomas D, Surdin-Kerjan Y (1996) The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484

    CAS  PubMed  Google Scholar 

  • Ivorra C, Pérez-Ortín JE, del Olmo M (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 54:698–708

    Google Scholar 

  • Jones DG, Reusser U, Braus GH (1991) Molecular cloning, characterization and analysis of the regulation of the ARO2 gene, encoding chorismate synthase, of Saccharomyces cerevisiae. Mol Microbiol 5:2143–2152

    CAS  PubMed  Google Scholar 

  • Kosugi A, Koizumi Y, Yanagida F, Udaka S (2001) MUP1, high affinity methionine permease, is involved in cysteine uptake by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65:728–731

    CAS  PubMed  Google Scholar 

  • Kwok EY, Severance S, Kosman DJ (2006) Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45:6317–6327

    CAS  PubMed  Google Scholar 

  • Lasko PF, Brandriss MC (1981) Proline transport in Saccharomyces cerevisiae. J Bacteriol 148:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–34621

    CAS  PubMed  Google Scholar 

  • Maftahi M, Nicaud JM, Levesque H, Gaillardin C (1995) Sequencing analysis of a 24.7 kb fragment of yeast chromosome XIV identifies six known genes, a new member of the hexose transporter family and ten new open reading frames. Yeast 11:1077–1085

    CAS  PubMed  Google Scholar 

  • Mardia KV, Kent JT, Bibby JH (1979) Multivariate analysis. Academic, UK

    Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren HJJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    CAS  PubMed  Google Scholar 

  • Marks VD, Ho Sui SJ, Erasmus D, van den Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52

    CAS  PubMed  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikawa J, Tsukagoshi Y, Yamashita S (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266:11184–11191

    CAS  PubMed  Google Scholar 

  • Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69:1162–1171

    CAS  PubMed  Google Scholar 

  • Petersen JG, Kielland-Brandt MC, Nilsson-Tillgren T, Bornaes C, Holmberg S (1988) Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott CC, Protchenko O, Kim YW, Boretsky Y, Shakoury-Elizeh M (2002) The response to iron deprivation in Saccharomyces cerevisiae: expression of siderophore-based systems of iron uptake. Biochem Soc Trans 30:698–702

    CAS  PubMed  Google Scholar 

  • Regenberg B, Holmberg S, Olsen LD, Kielland-Brandt MC (1998) Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr Genet 33:171–177

    CAS  PubMed  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    CAS  PubMed  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    CAS  PubMed  Google Scholar 

  • Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530–548

    PubMed  PubMed Central  Google Scholar 

  • Roussouw I, Thireos G, Hauge BM (1988) Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol 8:2132–2139

    Google Scholar 

  • Schaaff-Gerstenschlager I, Mannhaupt G, Vetter I, Zimmermann FK, Feldmann H (1993) TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. Eur J Biochem 217:487–492

    CAS  PubMed  Google Scholar 

  • Schreve JL, Garret JM (2004) Yeast Agp2 and Agp3 function as amino acid permeases in poor nutrient conditions. Biochem Biophys Res Commun 313:645–751

    Google Scholar 

  • Smith FW, Hawkesford MJ, Prosser IM, Clarkson DT (1995) Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet 247:709–715

    CAS  PubMed  Google Scholar 

  • Sophianopoulou V, Diallinas G (1993) AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae. Mol Microbiol 8:167–178

    CAS  PubMed  Google Scholar 

  • Stolz J, Hoja U, Meier S, Sauer N, Schweizer E (1999) Identification of the plasma membrane H +-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. J Biol Chem 274:18741–18746

    CAS  PubMed  Google Scholar 

  • Talibi D, Grenson M, Andre B (1995) Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucl Acids Res 23:550–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Fink GR (1985) The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene 38:205–214

    CAS  PubMed  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Barbey R, Surdin-Kerjan Y (1990) Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3′-phosphoadenylylsulfate reductase structural gene. J Biol Chem 265:15518–15524

    CAS  PubMed  Google Scholar 

  • Tusher CG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varela C, Cárdenas J, Melo F, Agosin E (2005) Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22:369–383

    CAS  PubMed  Google Scholar 

  • Wang D, Zheng F, Holmberg S, Kohlhaw GB (1999) Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J Biol Chem 274:19017–19024

    CAS  PubMed  Google Scholar 

  • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    CAS  PubMed  Google Scholar 

  • Yoo HS, Genbauffe FS, Cooper TG (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 5:2279–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Brisco PR, Hinkkanen AE, Kohlhaw GB (1987) Structure of yeast regulatory gene LEU3 and evidence that LEU3 itself is under general amino acid control. Nucl Acids Res 15:5261–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Garrett J, Schreve J, Michaeli T (1996) GNP1, the high-affinity glutamine permease of S. cerevisiae. Curr Genet 30:107–114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for the research presented in this paper was provided by the National Research Foundation (NRF) of South Africa and Winetech, the research funding body of the South African Wine industry, as well as personal sponsorship to DR by the Wilhelm Frank Trust. We would also like to thank Jo McBride and the Cape Town Centre for Proteomic and Genomic Research for the microarray analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian F. Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossouw, D., Bauer, F.F. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 84, 937–954 (2009). https://doi.org/10.1007/s00253-009-2204-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2204-4

Keywords

Navigation