Skip to main content

Advertisement

Log in

Characterization of a recombinant amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with extremely thermostable maltogenic amylase activity

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene (Tpen_1458) encoding a putative alpha amylase from hyperthermophilic archaeon Thermofilum pendens (TfMA) was cloned and expressed in Escherichia coli. The recombinant amylolytic enzyme was purified by Ni-NTA affinity chromatography and its catalytic properties were examined. Purified TfMA was extremely thermostable with a half-life of 60 min at an optimal temperature of 95°C. TfMA activity increased to 136% in the presence of 5 mM CaCl2. Maximal activity was measured toward γ-cyclodextrin with a specific activity of 56 U/mg using copper bicinchoninate method. TfMA catalyzed the ring-opening reaction by cleaving one α-1,4-glycosidic linkage of cyclodextrin to produce corresponding single maltooligosaccharide at the initial time. The final products from cyclodextrins, linear maltooligosaccharides, and starch were glucose and maltose, and TfMA could also degrade pullulan and amylase inhibitor acarbose to panose and acarviosine-glucose, respectively. These results revealed that TfMA is a novel maltogenic amylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci USA 87:5509–5513

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, Elkins JG, Mavromatis K, Lykidis A, Kim E, Thompson LS, Nolan M, Land M, Copeland A, Lapidus A, Lucas S, Detter C, Zhulin IB, Olsen GJ, Whitman W, Mukhopadhyay B, Bristow J, Kyrpides N (2008) Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190:2957–2965

    Article  CAS  Google Scholar 

  • Auh JH, Chae HY, Kim YR, Shim KH, Yoo SH, Park KH (2006) Modification of rice starch by selective degradation of amylose using alkalophilic Bacillus cyclomaltodextrinase. J Agric Food Chem 54:2314–2319

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buedenbender S, Schulz GE (2009) Structural base for enzymatic cyclodextrin hydrolysis. J Mol Biol 385:606–617

    Article  CAS  Google Scholar 

  • Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH (1998) Molecular and enzymatic characterization of novel maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem 253:251–262

    Article  CAS  Google Scholar 

  • Cheong KA, Kim TJ, Yoon JW, Park CS, Lee TS, Kim YB, Park KH, Kim JW (2002) Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Biotechnol Appl Biochem 35:27–34

    Article  CAS  Google Scholar 

  • Cheong KA, Tang S, Cheong TK, Cha H, Kim JW, Park KH (2005) Thermostable and alkalophilic maltogenic amylase of Bacillus thermoalkalophilus ET2 in monomer–dimer equilibrium. Biocatal Biotransformation 23:79–87

    Article  CAS  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio, Dalin E, Tice H, Pitluck S, Thompson LS, Brettin T, Bruce D, Han C, Tapia R, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Kim E, Anderson I, Olsen G, Reich C, Woese C, Richardson P (2006) Complete sequence of Chromosome1 of Thermofilum pendens Hrk 5. http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=119718918. Accessed 3 Mar 2007

  • Fox JD, Robyt JF (1991) Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal Biochem 195:93–96

    Article  CAS  Google Scholar 

  • Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 183:5050–5057

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316

    CAS  Google Scholar 

  • Jones A, Lamsa M, Frandsen TP, Spendler T, Harris P, Sloma A, Xu F, Nielsen JB, Cherry JR (2008) Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J Biotechnol 134:325–333

    Article  CAS  Google Scholar 

  • Kamasaka H, Sugimoto K, Takata H, Nishimura T, Kuriki T (2002) Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Appl Environ Microbiol 68:1658–1664

    Article  CAS  Google Scholar 

  • Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microbiol 65:1644–1651

    CAS  Google Scholar 

  • Kim YW, Choi JH, Kim JW, Park C, Kim JW, Cha H, Lee SB, Oh BH, Moon TW, Park KH (2003) Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol 69:4866–4874

    Article  CAS  Google Scholar 

  • Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, Kim JW, Seo NS, Park CS, Park KH (2007) Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta 1774:661–669

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Lee HS, Oh BH, Park KH (2002a) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277:21891–21897

    Article  CAS  Google Scholar 

  • Lee MH, Kim YW, Kim TJ, Park CS, Kim JW, Moon TW, Park KH (2002b) A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem Biophys Res Commun 295:818–825

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalycylic acid reagent for determination reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Robyt JF, Mukerjea R (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr Res 251:187–202

    Article  CAS  Google Scholar 

  • Tonozuka T, Ohtsuka M, Mogi S, Sakai H, Ohta T, Sakano Y (1993) A neopullulanase-type alpha-amylase gene from Thermoactinomyces vulgaris R-47. Biosci Biotechnol Biochem 57:395–401

    Article  CAS  Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 274:4044–4056

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  • Yang SJ, Lee HS, Park CS, Kim YR, Moon TW, Park KH (2004) Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an alpha-amylase and a cyclodextrin-hydrolyzing enzyme. Appl Environ Microbiol 70:5988–5995

    Article  CAS  Google Scholar 

  • Yang SJ, Lee HS, Kim JW, Lee MH, Auh JH, Lee BH, Park KH (2006) Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Carbohydr Res 341:420–424

    Article  CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    Google Scholar 

Download references

Acknowledgments

This project was sponsored in part by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and a Research Grant from Jilin Province Government (20080253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Li, D., Yin, Y. et al. Characterization of a recombinant amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with extremely thermostable maltogenic amylase activity. Appl Microbiol Biotechnol 85, 1821–1830 (2010). https://doi.org/10.1007/s00253-009-2190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2190-6

Keywords

Navigation