Skip to main content
Log in

Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box–Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Fattah YR, Saeed HM, Gohar YM, El-Baz MA (2005) Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem 40:1707–1714

    Article  CAS  Google Scholar 

  • Agrawal SC, Basu SK, Vora VC, Mason JR, Pirt SJ (1987) Studies on the production of L-acetylphenylcarbinol by yeast employing benzaldehyde as precursor. Biotechnol Bioeng 29:783–785

    Article  Google Scholar 

  • Ashipala OK, He Q (2008) Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresour Technol 99:4112–4119

    Article  CAS  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJA, Kotter P, Luttik MAH, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  Google Scholar 

  • Berti D, Randazzo D, Briganti F, Baglioni SA, Gennaro PD, Galli E, Bestetti G (2000) Direct micellar systems as a tool to improve the efficiency of aromatic substrate conversion for fine chemicals production. J Inorg Biochem 79:103–108

    Article  CAS  Google Scholar 

  • Berti D, Randazzo D, Briganti F, Scozzafava A, Gennaro PD, Galli E, Bestetti G, Baglioni P (2002) Nonionic micelles promote whole cell bioconversion of aromatic substrates in an aqueous environment. Langmuir 18:6015–6020

    Article  CAS  Google Scholar 

  • Box G, Behnken D (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90:754–760

    Article  CAS  Google Scholar 

  • Guha S, Jaffe P, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32:2317–2324

    Article  CAS  Google Scholar 

  • Jang SA, Lee DS, Lee MW, Woo SH (2007) Toxicity of phenanthrene dissolved in nonionic surfactant solutions to Pseudomonas putida P2. FEMS Microbiol Lett 267:194–199

    Article  CAS  Google Scholar 

  • Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotech 23:456–475

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Jha B, Gohel V (2007) Statistical optimization of medium components for kappa-carrageenase production by Pseudomonas elongata. Enzyme Microb Technol 40:813–822

    Article  CAS  Google Scholar 

  • Kolomytseva MP, Randazzo D, Baskunov BP, Scozzafava A, Briganti F, Golovleva LA (2009) Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469. Bioresour Technol 100:839–844

    Article  CAS  Google Scholar 

  • Laouar L, Lowe KC, Mulligan BJ (1996) Yeast responses to nonionic surfactants. Enzyme Microb Technol 18:433–438

    Article  CAS  Google Scholar 

  • Lee HJ, Lee MW, Lee DS, Woo SH, Park JM (2007) Estimation of direct-contact fraction for phenanthrene in surfactant solutions by toxicity measurement. J Biotechnol 131:448–457

    Article  CAS  Google Scholar 

  • Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217

    Article  CAS  Google Scholar 

  • Long A, Ward OP (1989) Biotransformation of aromatic aldehydes by Saccharomyces cerevisiae: characterization of the fermentation and toxicity effects of substrates and products. Biotechnol Bioeng 34(7):933–941

    Article  CAS  Google Scholar 

  • Murthy MSRC, Swaminathan T, Rakshit SK, Kosugi Y (2000) Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess Eng 22:35–39

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58

    Article  CAS  Google Scholar 

  • Randazzo D, Berti D, Briganti F, Baglioni P, Scozzafava A, Gennaro PD, Galli E, Bestetti G (2001) Efficient polycyclic aromatic hydrocarbons dihydroxylation in direct micellar systems. Biotechnol Bioeng 74(3):240–248

    Article  CAS  Google Scholar 

  • Rogers PL, Shin HS, Wang B (1997) Biotransformation for L-ephedrine production. Adv Biochem Eng Biotechnol 56:33–59

    CAS  Google Scholar 

  • Rosche B, Breuer M, Hauer B, Rogers PL (2005) Cells of Candida utilis for in vitro R-phenylacetylcarbinol production in an aqueous/octanol two-phase reactor. Biotechnol Lett 27:575–581

    Article  CAS  Google Scholar 

  • Sartoros C, Yerushalmi L, Guiot SR (2005) Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere 61:1042–1050

    Article  CAS  Google Scholar 

  • Shin HS, Rogers PL (1995) Biotransformation of benzaldehyde to L-phenylacetylcarbinol, an intermediate in L-ephedrine production, by immobilized Candida utilis. Appl Microbiol Biotechnol 44:7–14

    Article  CAS  Google Scholar 

  • Wang Z (2007) The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl Microbiol Biotechnol 75:1–10

    Article  CAS  Google Scholar 

  • Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Microbial transformation of hydrophobic compound in cloud point system. J Mol Catal B 27:147–153

    Article  CAS  Google Scholar 

  • Wang Z, Xu J-H, Wang L, Zhang W, Zhuang B, Hi Qi (2007) Improvement the tolerance of baker’s yeast to toxic substrate/product with cloud point system during the whole cell microbial transformation. Enzyme Microb Technol 41:296–301

    Article  Google Scholar 

  • Wang Z, Xu J-H, Chen D (2008a) Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotech 35:645–656

    Article  CAS  Google Scholar 

  • Wang Z, Xu J-H, Liang R, Qi H (2008b) A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem Eng J 41:24–29

    Article  Google Scholar 

  • Wang Z, Liang R, Xu J-H, Liu Y, Qi H (2009) A closed concept of extractive microbial transformation in novel polyethylene glycol induced cloud point system with viable Saccharomyces cerevisiae conversion of benzaldehyde into L-phenylacetylcarbinol. Appl Biochem Biotechnol . doi:10.1007/s12010-009-8695-8

    Google Scholar 

  • Zhang W, Wang Z, Li W, Zhuang B, Qi H (2008) Production of L-phenylacetylcarbinol by microbial transformation in polyethylene glycol induced cloud point system. Appl Microbiol Biotechnol 78:233–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the National Natural Science Foundation of China (No. 20676080) and partially supported by the Open Project Program of the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China, and Morning Star Promotive Program for Young Scholar of Shanghai Jiao Tong University, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y., Qian, C., Wang, Z. et al. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology. Appl Microbiol Biotechnol 85, 517–524 (2010). https://doi.org/10.1007/s00253-009-2139-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2139-9

Keywords

Navigation