Skip to main content
Log in

Quantitative analysis of isoprenoid diphosphate intermediates in recombinant and wild-type Escherichia coli strains

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In biotechnology, the heterologous biosynthesis of isoprenoid compounds in Escherichia coli is a field of great interest and growth. In order to achieve higher isoprenoid yields in heterologous E. coli strains, it is necessary to quantify the pathway intermediates and adjust gene expression. In this study, we developed a precise and sensitive nonradioactive method for the simultaneous quantification of the isoprenoid precursors farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in recombinant and wild-type E. coli cells. The method is based on the dephosphorylation of FPP and GGPP into the respective alcohols and involves their in situ extraction followed by separation and detection using gas chromatography–mass spectrometry. The integration of a geranylgeranyl diphosphate synthase gene into the E. coli chromosome leads to the accumulation of GGPP, generating quantities as high as those achieved with a multicopy expression vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albermann C, Ghanegaonkar S, Lemuth K, Vallon T, Reuss M, Armbruster W, Sprenger GA (2008) Biosynthesis of the Vitamin E compound delta-tocotrienol in recombinant Escherichia coli cells. ChemBioChem (in press)

  • Baba T, Muth J, Allen CM (1985) Photoaffinity labeling of undecaprenyl pyrophosphate synthetase with a farnesyl pyrophosphate analogue. J Biol Chem 260:10467–10473

    CAS  PubMed  Google Scholar 

  • Beyer P, Kreuz K, Kleinig H (1985) Separation of mevalonate phosphates and isopentenyl pyrophosphate by thin-layer chromatography and of short-chain prenyl phosphates by ion-pair chromatography on a high-performance liquid chromatography column. Methods Enzymol 111:248–252

    Article  CAS  Google Scholar 

  • Bruenger E, Rilling HC (1988) Determination of isopentenyl diphosphate and farnesyl diphosphate in tissue samples with a comment on secondary regulation of polyisoprenoid biosynthesis. Anal Biochem 173:321–327

    Article  CAS  Google Scholar 

  • Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  CAS  Google Scholar 

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14

    Article  CAS  Google Scholar 

  • Chiang CJ, Chen PT, Chao YP (2008) Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng. doi:https://doi.org/10.1002/bit.21976

    Article  CAS  Google Scholar 

  • Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537

    Article  CAS  Google Scholar 

  • Fujisaki S, Nishino T, Katsuki H (1986) Isoprenoid synthesis in Escherichia coli. Separation and partial purification of four enzymes involved in the synthesis. J Biochem 99:1327–1337

    Article  CAS  Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577

    Article  CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    Article  CAS  Google Scholar 

  • Kainou T, Okada K, Suzuki K, Nakagawa T, Matsuda H, Kawamukai M (2001) Dimer formation of octaprenyl-diphosphate synthase (IspB) is essential for chain length determination of ubiquinone. J Biol Chem 276:7876–7883

    Article  CAS  Google Scholar 

  • Kato J, Fujisaki S, Nakajima K, Nishimura Y, Sato M, Nakano A (1999) The Escherichia coli homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. J Bacteriol 181:2733–2738

    Article  CAS  Google Scholar 

  • Keller RK (1996) Squalene synthase inhibition alters metabolism of nonsterols in rat liver. Biochim Biophys Acta 1303:169–179

    Article  Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  CAS  Google Scholar 

  • Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546

    CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  • Mijts BN, Schmidt-Dannert C (2003) Engineering of secondary metabolite pathways. Curr Opin Biotechnol 14:597–602

    Article  CAS  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    Article  CAS  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524

    Article  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Ruther A, Misawa N, Boger P, Sandmann G (1997) Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol 48:162–167

    Article  CAS  Google Scholar 

  • Saisho Y, Morimoto A, Umeda T (1997) Determination of farnesyl pyrophosphate in dog and human plasma by high-performance liquid chromatography with fluorescence detection. Anal Biochem 252:89–95

    Article  CAS  Google Scholar 

  • Song L (2003) Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants. Anal Biochem 317:180–185

    Article  CAS  Google Scholar 

  • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  Google Scholar 

  • Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336:51–59

    Article  CAS  Google Scholar 

  • Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007a) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  Google Scholar 

  • Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY, Oh DK, Keasling JD, Kim SW (2007b) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23:599–605

    Article  CAS  Google Scholar 

  • Yuan LZ, Rouviere PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  Google Scholar 

  • Zeppenfeld T, Larisch C, Lengeler JW, Jahreis K (2000) Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. J Bacteriol 182:4443–4452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tom Schumacher for the determination of the glucose concentrations. This study was supported by the “Deutsche Forschungsgemeinschaft” (through collaborative research center SFB 706, TP B3) and the “Ministerium für Wissenschaft, Forschung und Kunst” of the state of Baden-Württemberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Albermann or K. Lemuth.

Additional information

T. Vallon and S. Ghanegaonkar contributed equally to this work.

Electronic supplementary material

Fig. S1

Mass spectrum of farnesol (FOH) peak at 10.3 min (GIF 23.7 KB)

Fig. S2

Mass spectrum of geranylgeraniol (GGOH) peak at 15.0 min (GIF 25.8 KB)

Fig. S3

Concentration of farnesol recovered from various concentrations of FPP after resuspension of evaporated standard solutions in dissolving solution and digestion with alkaline phosphatase. y = 1.1858x + 0.9242, R 2 = 0.9978 (GIF 26 KB)

Fig. S4

Concentration of geranylgeraniol recovered from various concentrations of GGPP after resuspension of evaporated standard solutions in dissolving solution and digestion with alkaline phosphatase. y = 0.925x + 1.6084, R 2 = 0.9983 (GIF 28 KB)

Fig. S5

FPP and GGPP were isolated from E. coli LJ110 after 10 h batch cultivation as described in the “Material and methods” section. Shown is the GC chromatogram of the hexane extract (GIF 29.4 KB)

Fig. S6

FPP and GGPP were isolated from E. coli LJ110 malEG::Ptac-crtE after 30 h batch cultivation as described in the “Material and methods” section. Shown is the GC chromatogram of the hexane extract (GIF 26.1 KB)

Fig. S7

FPP and GGPP were isolated from E. coli LJ110 with pCAS30 after 30 h batch cultivation as described in the “Material and methods” section. Shown is the GC chromatogram of the hexane extract (GIF 26.8 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallon, T., Ghanegaonkar, S., Vielhauer, O. et al. Quantitative analysis of isoprenoid diphosphate intermediates in recombinant and wild-type Escherichia coli strains. Appl Microbiol Biotechnol 81, 175–182 (2008). https://doi.org/10.1007/s00253-008-1707-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1707-8

Keywords

Navigation