Skip to main content
Log in

Purification, biochemical and molecular characterization of a metalloprotease from Pseudomonas aeruginosa MN7 grown on shrimp wastes

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa MN7. The strain was found to produce proteases when it was grown in media containing only shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. The use of 60 g/l SWP resulted in a high protease production. Elastase, the major protease produced by P. aeruginosa MN7, was purified from the culture supernatant to homogeneity using acetone precipitation, Sephadex G-75 gel filtration, and ultrafiltration using a 10-kDa cut-off membrane, with a 5.2-fold increase in specific activity and 38.4% recovery. The molecular weight of the purified elastase was estimated to be 34 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The optimum temperature and pH for protease activity were 60°C and 8.0, respectively. The activity of the enzyme was totally lost in the presence of ethylene glycol tetraacetic acid, suggesting that the purified enzyme is a metalloprotease. The purified enzyme was highly stable in the presence of organic solvents, retaining 100% of its initial activity after 60 days of incubation at 30°C in the presence of dimethyl sulfoxide and methanol. The lasB gene, encoding the MN7 elastase, was isolated and its DNA sequence was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bever RA, Iglewski BH (1988) Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170:4309–4314

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Braun P, Tommassen J, Filloux A (1996) Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa. Mol Microbiol 19:297–306

    Article  CAS  Google Scholar 

  • Chen WP, Kuo TT (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260

    Article  CAS  Google Scholar 

  • Colman PM, Jansonius JN, Matthews BW (1972) The structure of thermolysin: an electron density map at 2.3 Å resolution. J Mol Biol 70:701–724

    Article  CAS  Google Scholar 

  • Cowan D (1996) Industrial enzyme technology. Trends Biotechnol 14:177–178

    Article  CAS  Google Scholar 

  • Cox CD (1993) Pseudomonas aeruginosa the opportunist. In: Fick RB (ed) Pathogenesis and disease. CRC, Boca Raton FL

    Google Scholar 

  • Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol 80:49–51

    Article  CAS  Google Scholar 

  • Fukushima J, Yamamoto S, Morihara K, Atsumi Y, Takeuchi H, Kawamoto S, Okuda K (1989) Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J Bacteriol 171:1698–1704

    Article  CAS  Google Scholar 

  • Ghorbel B, Sellami-Kamoun A, Nasri M (2003) Stability studies of protease from Bacillus cereus BG1. Enzyme Microb Technol 32:513–518

    Article  CAS  Google Scholar 

  • Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203:25–32

    Article  CAS  Google Scholar 

  • Gupta A, Roy I, Khare SK, Gupta MN (2005) Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J Chromatogr 1069:155–161

    Article  CAS  Google Scholar 

  • Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270

    Article  CAS  Google Scholar 

  • Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no.64. Appl Biochem Biotechnol 38:83–92

    Article  CAS  Google Scholar 

  • Kessler E, Safrin M (1988) Synthesis, processing, and transport of Pseudomonas aeruginosa elastase. J Bacteriol 170:5241–5247

    Article  CAS  Google Scholar 

  • Kessler E, Safrin M (1994) The propeptide of Pseudomonas aeruginosa elastase acts as an elastase inhibitor. J Biol Chem 269:22726–22731

    CAS  PubMed  Google Scholar 

  • Kessler E, Safrin M, Peretz M, Burstein Y (1992) Identification of cleavage sites involved in proteolytic processing of Pseudomonas aeruginosa preproelastase. FEBS 299:291–293

    Article  CAS  Google Scholar 

  • Kunugi S, Yoshida M (1996) Kinetics of a thermolysin-catalyzed peptide formation reaction in acetonitrile-water. Bull Chem Soc Jpn 69:805–809

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • McIver K, Kessler E, Ohman DE (1991) Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol 173:7781–7789

    Article  CAS  Google Scholar 

  • McIver KS, Kessler E, Olson JC, Ohman DE (1995) The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol 18:877–889

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 431–435

    Google Scholar 

  • Morihara K (1963) Pseudomonas aeruginosa proteinase I. Purification and general properties. Biochim Biophys Acta 73:113–124

    Article  CAS  Google Scholar 

  • Morihara K (1964) Production of elastase and proteinase by Pseudomonas aeruginosa. J Bacteriol 88:745–757

    Article  CAS  Google Scholar 

  • Morihara K (1995) Pseudolysin and other pathogen endopeptidases of thermolysin family. Methods Enzymol 248:242–253

    Article  CAS  Google Scholar 

  • Morihara K, Tsuzuki H, Oka T, Inoue H, Ebata M (1965) Pseudomonas aeruginosa elastase Isolation, crystallization, and preliminary characterization. J Biol Chem 240:3295–3304

    CAS  PubMed  Google Scholar 

  • Murakami Y, Hirata M, Hirata A (1996) Mathematical approach to thermolysin-catalyzed synthesis of aspartame precursor. J Ferment Bioeng 82:246–252

    Article  CAS  Google Scholar 

  • Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, Yasuda M, Ishikawa H (1999) Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J Biosci Bioeng 87:61–68

    Article  CAS  Google Scholar 

  • Ogino H, Yokoo J, Watanabe F, Ishikawa H (2000) Cloning and sequencing of a gene of organic solvent-stable protease secreted from Pseudomonas aeruginosa PST-01 and its expression in Escherichia coli. Biochem Eng J 5:191–200

    Article  CAS  Google Scholar 

  • Rahman RNZA, Geok LP, Basri M, Salleh AB (2006) An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzyme Microb Technol 39:1484–1491

    Article  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    Article  CAS  Google Scholar 

  • Rival S, Besson C, Saulnier J, Wallach J (1999) Dipeptide derivative synthesis catalysed by Pseudomonas aeruginosa elastase. J Pept Res 53:170–176

    Article  CAS  Google Scholar 

  • Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  • Shastry S, Prasad MS (2002) Extracellular protease from Pseudomonas sp. (CL 1457) active against Xanthomonas campestris. Process Biochem 37:611–621

    Article  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RF, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Thayer MM, Flaherty KM, McKay DB (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Ǻ resolution. J Biol Chem 266:2864–2871

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Volkin DB, Staubli A, Langer R Klibanov AM (1991) Enzyme thermoinactivation in anhydrous organic solvents. Biotechnol Bioeng 37:843–853

    Article  CAS  Google Scholar 

  • Watson MEE (1984) Compilation of published signal sequences. Nucleic Acids Res 12:5145–5164

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the « Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Technologie, Tunisie ».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemel Jellouli.

Additional information

Kemel Jellouli and Ahmed Bayoudh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jellouli, K., Bayoudh, A., Manni, L. et al. Purification, biochemical and molecular characterization of a metalloprotease from Pseudomonas aeruginosa MN7 grown on shrimp wastes. Appl Microbiol Biotechnol 79, 989–999 (2008). https://doi.org/10.1007/s00253-008-1517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1517-z

Keywords

Navigation