Skip to main content
Log in

Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

For the first time, a genome-wide transcriptional analysis was performed to elucidate the cellular response of Staphylococcus aureus to triclosan. Our results indicate that the effects of triclosan are widespread on metabolism, affecting many vital cellular processes. Triclosan downregulated the transcription of genes involved in virulence factor and energy metabolism such as amino acid, carbohydrate, lipid transport, and metabolism, while multidrug resistance genes, coenzyme transport, and metabolism and transcription genes were upregulated. Furthermore, triclosan downregulated the transcription of genes encoding major lipid metabolism enzymes such as 3-hydroxyacyl-CoA dehydrogenase, acetyl-CoA acetyltransferase, acetyl-CoA synthetase, and acetyl-CoA carboxylase, which all play essential roles in S. aureus lipid metabolism. It is interesting to note that the expression of the enoyl-ACP reductase gene, fabI, was not changed after exposure of S. aureus with 0.05 μM triclosan at 10 and 60 min in our study. This work also implies that triclosan may kill S. aureus by interfering with its ability to form cell membranes. Another important implication of our result is that S. aureus may generate resistance factors under triclosan stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Affymetrix (2004) Affymetrix GeneChipÒ expression analysis technical manual. Affymetrix, Santa Clara, CA

    Google Scholar 

  • Barber LB, Keefe SH, Antweiler RC, Taylor HE, Wass RD (2006) Accumulation of contaminants in fish from wastewater treatment wetlands. Environ Sci Technol 40:603–611

    Article  CAS  Google Scholar 

  • Bardowski J, Ehrlich SD, Chopin A (1994) BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. J Bacteriol 176:5681–5685

    Article  CAS  Google Scholar 

  • Bayles KW (2000) The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol 8:274–278

    Article  CAS  Google Scholar 

  • Chang W, Small DA, Toghrol F, Bentley WE (2005a) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115

    Article  Google Scholar 

  • Chang W, Small DA, Toghrol F, Bentley WE (2005b) Microarray analysis of toxicogenomic effects of peracetic acid on Pseudomonas aeruginosa. Environ Sci Technol 39:5893–5899

    Article  CAS  Google Scholar 

  • Chang W, Small DA, Toghrol F, Bentley WE (2006a) Global transcriptome analysis of Staphylococcus aureus response to hydrogen reroxide. J Bacteriol 188:1648–1659

    Article  CAS  Google Scholar 

  • Chang W, Toghrol F, Bentley WE (2006b) Toxicogenomic response of Staphylococcus aureus to peracetic acid. Environ Sci Technol 40:5124–5131

    Article  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    Article  CAS  Google Scholar 

  • Dukan S, Levi Y, Touati D (1997) Recovery of culturability of an HOCl-stressed population of Escherichia coli after incubation in phosphate buffer: resuscitation or regrowth? Appl Environ Microbiol 63:4204–4209

    Article  CAS  Google Scholar 

  • Fraser KR, Harvie D, Coote PJ, O’Byrne CP (2000) Identification and characterization of an ATP binding cassette l-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 66:4696–4704

    Article  CAS  Google Scholar 

  • Fux L, Nussbaum-Shochat A, Lopian L, Amster-Choder O (2004) Modulation of monomer conformation of the BglG transcriptional antiterminator from Escherichia coli. J Bacteriol 186:6775–6781

    Article  CAS  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microbial Cell Factories 4:14

    Article  Google Scholar 

  • Heath RJ, Li J, Roland GE, Rock CO (2000) Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem 275:4654–4659

    Article  CAS  Google Scholar 

  • Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    Article  CAS  Google Scholar 

  • Heidler J, Halden RU (2007) Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369

    Article  CAS  Google Scholar 

  • Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40:3634–3639

    Article  CAS  Google Scholar 

  • Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497

    Article  CAS  Google Scholar 

  • Hoshino T, Kose K, Uratani Y (1990) Cloning and nucleotide sequence of the gene braB coding for the sodium-coupled branched-chain amino acid carrier in Pseudomonas aeruginosa PAO. Mol Gen Genet 220:461–467

    Article  CAS  Google Scholar 

  • Ingmer H, Vogensen FK, Hammer K, Kilstrup M (1999) Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. J Bacteriol 181:2075–2083

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance.. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Lambert RJ (2004) Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. J Appl Microbiol 97:699–711

    Article  CAS  Google Scholar 

  • Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol 40:687–695

    Article  CAS  Google Scholar 

  • McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    Article  CAS  Google Scholar 

  • Mitchell WJ, Reizer J, Herring C, Hoischen C, Saier MH Jr. (1993) Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes. J Bacteriol 175:2758–2761

    Article  CAS  Google Scholar 

  • Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJ (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30:245–257

    Article  CAS  Google Scholar 

  • Rock CO, Cronan JE (1996) Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302:1–16

    Article  Google Scholar 

  • Russell AD (2002a) Antibiotic and biocide resistance in bacteria: introduction. J Appl Microbiol 92:1S–3S Suppl

    Article  Google Scholar 

  • Russell AD (2002b) Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol 92:121S–135S Suppl

    Article  Google Scholar 

  • Small DA, Chang W, Toghrol F, Bentley WE (2007a) Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 76:1093–1105

    Article  CAS  Google Scholar 

  • Small DA, Chang W, Toghrol F, Bentley WE (2007b) Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 74:176–185

    Article  CAS  Google Scholar 

  • Weber DJ, Rutala WA (2006) Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? Infect Control Hosp Epidemiol 27:1107–1119

    Article  Google Scholar 

  • Yazdankhah SP, Scheie AA, Hoiby EA, Lunestad BT, Heir E, Fotland TO, Naterstad K, Kruse H (2006) Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 12:83–90

    Article  CAS  Google Scholar 

  • Zhang Y, Cronan JE Jr (1998) Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J Bacteriol 180:3295–3303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the United States Environmental Protection Agency Grant number T-83284001-1. Although the research described in this paper has been funded wholly by the United States Environmental Protection Agency, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the EPA; nor does the mention of trade names or commercial products constitute endorsement of recommendation of use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freshteh Toghrol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, HJ., Chang, M.W., Toghrol, F. et al. Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus . Appl Microbiol Biotechnol 78, 695–707 (2008). https://doi.org/10.1007/s00253-008-1349-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1349-x

Keywords

Navigation